Roll No. \square
Total No. of Questions : 09

B.Tech. (Sem.-2)
 MATHEMATICS-II
 Subject Code : BTAM-202-18
 M.Code : 91958
 Date of Examination : 23-01-2023

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C. have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. a) Find the integrating factor of differential equation: $\left(x^{2}+y^{2}+x\right) d x+x y d y=0 ; x>0$.
b) Solve the differentiakenation: $x^{2}\left(\frac{d y}{d x}\right)^{2}+x y \frac{d y}{d x}-6 y^{2}=0$.
c) Define homo Gleous linear differential equation with constant coefficients.
d) Find the Gifferential equation of all spheres of fixed radius having centres in $x y$ plane.
e) Solve the lagrange's equation: $p+q=0$.
f) Classify the differential equation: $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$.
g) What are the advantages of Regula Falsie method?
h) What is the relation between ∇ and E ?
i) What is Simpson's $\frac{1}{3}$-rule?
j) State Euler's modified iteration formula.

SECTION-B

2. Solve $y^{\prime \prime \prime}-y^{\prime \prime}+4 y^{\prime}-4 y=\sin 3 x$.
3. Solve the differential equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$.
4. Solve the following Lagrange's partial differential equation :

$$
(y+z) p+(z+x) q=(x+y)
$$

5. Solve the equation $p^{2}=q+p x$ Charpit's method.

SECTION-C

6. Use bisection method to solve the equation $x^{3}+x^{2}+x+7=0$ correct to three decimal places.
7. Given that $\sum_{11}^{20} f(x) \neq 44060, \sum_{14}^{20} f(x)=38220, \sum_{17}^{20} f(x)=27178$, and $f(20)=8450$.

Find the valut of $f(11)$.
8. Solve the initial value problem $y^{\prime}=x(y-x), y(2)=3$ in the interval [2, 24] using the classical Runge-Kutta fourth order with step size $h=0.2$.
9. Tabulate the solution of $\frac{d y}{d x}=x+y, y(0)=0$ for $0.4 \leq x \leq 1.0$ with $h=0.1$ using Predictor Corrector formula.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

