Roll No.

Total No. of Questions: 09

B.Tech All (Sem. - 2)
 MATHEMATICS-II
 Subject Code: BTAM-202-18
 M Code: 76255
 Date of Examination : 23-01-23

Time: 3 Hrs.
Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each, carrying EIGHT marks each.
3. Attempt any FIVE questions from SECTION B \& C, selecting atleast TWO questions from each of these SECTIONS B \& C.

SECTION-A

1. Answer the following:
a) Is this differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$ linear?
b) Is this differential equation $\left(e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0\right.$ exact?
c) Write the solution of ${ }^{\text {a }}$ Clairaut's equation $y=p x+a p /(b p+c)$.
d) Find the compld solution of $\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+6 \frac{\partial^{2} z}{\partial y^{2}}=0$.
e) Find particular integral of $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=e^{2 x+3 y}$.
f) Establish the Newton Raphson method.
g) Give the Gauss's backward interpolation formula.
h) Write the formula for Simpson's $\frac{3}{8}$ rule.
i) Give the Milne's predictor corrector formula.
j) Write the one dimensional wave equation.

SECTION-B

2. Solve:
a) $\frac{d y}{d x}=\frac{5 x^{4}+3 x^{2} y^{2}-2 x y^{3}}{5 y^{4}+3 x^{2} y^{2}-2 x^{3} y}$
b) $\frac{d y}{d x}-\frac{\tan y}{1+x}=(1+x) e^{x} \sec y$.
3. a) Solve $\left(x^{2} D^{2}+4 x D+2\right) y=e^{e^{x}}$.
b) Solve using method of variation of parameters $\frac{d^{2} y}{d x^{2}}-4 y=e^{2 x}$.
4. Solve::
a) $x(y-z) p+y(z-x) q=z(x-y)$
b) $\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=\sin (x-2 y)$
5. a) Solve the $\operatorname{PDE}\left(D^{2}-D^{\prime}\right) z=A \cos (l x+m y)$.
b) Using method of separation of variables, solve $\frac{\partial u}{\partial x}=4 \frac{\partial u}{\partial y}$ with $u(0, y)=8 e^{-3 y}$.

SECTION-C

6. a) Find a root of $x^{3}-2 x-5=0$ using bisection method correct upto three decimal places.
b) Using interpolation, estimate number of students who got marks between 40 to 45 :

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students	3	42	51	35	31

7. a) Estimate $f(22)$, using Galss forward difference formula:

$f(x)$	354	332	291	260	231	204

b) Estimate $\int_{0}^{0.6} e^{-x} d x$, using Simpson's $\frac{1}{3}$ rule by taking 7 ordinates.
8. a) Use Euler's modified method to find the value of y at $x=0.2$ upto 3 decimals, where $y(0)=2, \frac{d y}{d x}=\log (x+y) .($ Take $h=0.1)$
b) Use Runge-Kutta method of order 4 to find the value of y at $x=0.1$ upto 3 decimals, where $y(0)=1, \frac{d y}{d x}=x+y^{2}$.
9. Using Bendre-Schmidt method, solve the PDE $2 \frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial f}{\partial t} ; 0<t<1.5,0<x<4$ subject to conditions $f(x, 0)=50(4-x), f(0, t)=0, f(4, t)=0$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

