Roll No.

Total No. of Pages: 03

Total No. of Questions: 09

B.Tech. (Sem.-2)
MATHEMATICS-II

Subject Code: BTAM-201-18

M.Code: 76254

Date of Examination: 23-01-23

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Answer briefly:

- 1. a) Is this differential equation $\frac{d^2y}{dx^2} = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}$ linear ?
 - b) Is this differential equation $(2x^2 + 3y^2 7) x dx (3x^2 + 2y^2 8) y dy = 0$ exact?
 - c) Write the solution of the Clairaut's equation $y = px a^2p/(p+1)$.
 - d) Find the wronskian from $\frac{d^2y}{dx^2} y = \frac{2}{1 + e^x}$.
 - e) Find complementary function of $\frac{\partial^2 z}{\partial t^2} a^2 \frac{\partial^2 z}{\partial x^2} = E \sin pt$
 - f) Find particular integral of $\frac{\partial^2 z}{\partial x^2} 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = \sin x$.
 - g) Write one dimensional diffusion equation.
 - h) Classify the equation $y^2u_{xx} 2xyu_{xy} + x^2y_{yy} + 2u_x 3u = 0$.

- What is a boundary value problem?
- Write Laplace equation in spherical coordinates.

SECTION-B

2. Solve:

a)
$$(1 + e^{x/y}) + e^{x/y} \left(1 - \frac{x}{y}\right) \frac{dy}{dx} = 0$$

- b) $x \frac{dy}{dx} + y \log y = xye^x$.
- 3. Solve:
 - a) $(D^2 4D + 3) y = 2xe^{3x} + \cos 2x$
 - b) Find the power series solution of the differential equation $(xD^2 + D 1)y = 0$
- 4.

Solve:
(a)
$$(z-y)p + (x-z)q + (y-x)$$
 (b) $z(xp-yq) = y^2 - x^2$
a) Solve the PDE $(4D^2 + 12DD' + 9D'^2) z = e^{3x-2y}$.
b) Solve the PDE $(D^2 - DD' + D' - 1) z = \cos(x + 2y)$.

SECTION-C

- Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial y} + u$ by method of separation of variables. Given that $u = 6e^{-3x}$ when x=0.
- Solve the BVP $\frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial^2 u}{\partial x^2}$ using D' Alembert's technique subject to the conditions

$$u(0, t) = u(5, t) = 0$$
, $u(x, 0) = 0$ and $\frac{\partial u}{\partial t}\Big|_{t=0} = 3 \sin 2\pi x - 2\sin 5\pi x$.

2 | M-76254 (S1)-2746

- Solve the BVP $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}$ using separation of variables method subject to the 8. conditions u(0, t) = 1, $u(\pi, t) = 3$, u(x, 0) = 1 where $0 < x < \pi$, t > 0.
- 9. The bounding diameter of a semi-circular plate of radius a is kept at 0°C and the temperature along the semi-circular boundary is given by

$$u(a, \theta) = \begin{cases} 50\theta, & \text{when } 0 < \theta \le \pi/2 \\ 50(\pi - \theta), & \text{when } \pi/2 < \theta < \pi \end{cases}$$

Estimate the steady state temperature in the plate using Laplace equation

Estimate the steady state temperature in the plate using Laplace equation
$$r^2 \frac{\partial^2 u}{\partial r^2} + r \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial \theta^2} = 0.$$

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 | M-76254 (S1)-2746