Roll No. \square
Total No. of Questions: 09

B.Tech. (Civil) (2018 Batch) (Sem.-2)
 MATHEMATICS-II
 Subject Code : BTAM-201-18
 M.Code : 76254

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION - B \& C.

SECTION-A

1. Answer briefly :
a) What is an exact differential equation? Give example.
b) Solve $p(1+q)=q z$.
c) Classify the differential quation $u_{x x}+u_{y y}=f(x, y)$.

e) Define ordinary $a_{\text {, }}$ oint of a differential equation.
f) Write Laplawe equation in spherical coordinates.
g) Show that e^{-x} and $x e^{-x}$ are independent solutions of $y+2 y+y=0$ in any interval.
h) Is $x u_{x}+y u_{y}=u^{2}$ a nonlinear partial differential equation?
i) Write an example of linear differential equation of first order.
j) Give an example of elliptic partial differential equation.

SECTION-B

2. a) The initial value problem governing the current i flowing in a series RL circuit when a voltage $v(t)=t$ is applied, is given by $i R \square L \frac{d i}{d t} \square t, t \equiv 0, i(0)=0$, where R and L are constants. Find the current $i(t)$ at any time t.
b) Solve $\left(x^{2} \mathrm{D}^{2}+7 x D+13\right) y=\log (x)$
3. a) Solve by the method of variation of parameters $y-2 y+y=e^{x} \tan (x)$.
b) Obtain the series solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}} \square x \frac{d y}{d x} \square\left(x^{2} \square 4\right) y \square 0$.
4. a) Solve $\left(3 \mathrm{D}^{2}-\mathrm{D}\right) u=\sin (2 x+3 y)$.
b) Find the complete solution of $\left(\mathrm{D}^{3}+\mathrm{D}^{2} \mathrm{D}-\mathrm{DD}^{2}-\mathrm{D}^{3}\right) z=e^{x} \cos 2 y$.
5. a) Solve the partial differential equation $(m z-n y) \frac{z}{x} \square(n x \square l z) \frac{z}{y} \square l y \square m x$.
b) Find the general solution of partial differential equation :

$$
\begin{equation*}
4 \frac{{ }^{2} z}{x^{2}} \square 4 \frac{{ }^{2} z}{x y} \square \frac{{ }^{2} z}{y^{2}} \square 16 \log (x \square 2 y) \tag{4}
\end{equation*}
$$

SECTION-C

6. a) Classify the partial differential equation $\left(1+{ }^{2} y u_{x x}+\left(1+{ }^{2}\right) u_{y y}=0\right.$ for different values of x and y.
b) Solve the equation $\frac{u}{\sigma^{4}} \frac{u}{y}, u(0, y) \square 8 e^{\square 3 y}$ using method of separation of variables.(4)
7. a) Derive D'Alember's solution of one dimensional wave equation.
b) Find the defiction of a vibrating string of unit length having fixed ends with initial velocity 0 and initial deflection $f(x)=a\left(x-x^{2}\right)$.
8. An insulated rod of length l has its end A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t.
9. Solve the Laplace equation $\frac{{ }^{2} u}{x^{2}} \frac{{ }^{2} u}{y^{2}} \square 0$ subject to the conditions $u(0, y)=u(l, y)=$ $(x, 0)=0$ and $u(x, a)=\sin (n \not x / l)$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

