Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Tech. (Civil) (2018 Batch) (Sem.–2) MATHEMATICS-II Subject Code : BTAM-201-18

M.Code: 76254

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

- **l.** Answer briefly :
 - a) What is an exact differential equation? Give example.
 - b) Solve p(1+q) = qz.
 - c) Classify the differential equation $u_{xx} + u_{yy} = f(x, y)$.
 - d) Classify the singular points of $x^2y + xy^{1} + (x^2 n^2) = 0$, *n* is constant.
 - e) Define ordinary wint of a differential equation.
 - f) Write Laplace equation in spherical coordinates.
 - g) Show that e^{-x} and xe^{-x} are independent solutions of $y^{\dagger} + 2y^{\dagger} + y = 0$ in any interval.
 - h) Is $xu_x + yu_y = u^2$ a nonlinear partial differential equation?
 - i) Write an example of linear differential equation of first order.
 - j) Give an example of elliptic partial differential equation.

SECTION-B

- 2. a) The initial value problem governing the current *i* flowing in a series RL circuit when a voltage v(t) = t is applied, is given by $iR \Box L \frac{di}{dt} \Box t$, $t \equiv 0$, i(0) = 0, where R and L are constants. Find the current i(t) at any time *t*. (4)
 - b) Solve $(x^2D^2 + 7xD + 13) y = \log(x)$ (4)

1 M-76254

(S1)-2785

Download all NOTES and PAPERS at StudentSuvidha.com

- 3. a) Solve by the method of variation of parameters $y^{\dagger} 2y^{\dagger} + y = e^{x} \tan(x)$. (4)
 - b) Obtain the series solution of the equation $x^2 \frac{d^2y}{dx^2} \Box x \frac{dy}{dx} \Box (x^2 \Box 4) y \Box 0.$ (4)

4. a) Solve
$$(3D^2 - D^1)u = \sin(2x + 3y).$$
 (4)

b) Find the complete solution of $(D^3 + D^2D^{\dagger} - DD^{\dagger 2} - D^{\dagger 3})z = e^x \cos 2y.$ (4)

5. a) Solve the partial differential equation
$$(mz - ny) - \frac{z}{x} \Box (nx \Box lz) - \frac{z}{y} \Box ly \Box mx$$
. (4)

b) Find the general solution of partial differential equation : (4)

$$4 \frac{\frac{2}{x^2}}{x^2} \boxed{4} \frac{\frac{2}{x^2}}{x^2} \boxed{\frac{2}{y^2}} \boxed{16 \log (x \boxed{2})}$$

SECTION-C

- 6. a) Classify the partial differential equation $(1 + 2y)u_{xx} + (1 + 2x)u_{yy} = 0$ for different values of x and y. (4)
 - b) Solve the equation $\frac{u}{y}$, $u(0,y) \square 8e^{\square 3y}$ using method of separation of variables.(4)
- 7. a) Derive D'Alember's solution of one dimensional wave equation. (4)
 - b) Find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and initial deflection $f(x) = a (x x^2)$. (4)
- 8. An insulated rod of length l has its end A and B maintained at 0°C and 100°C, respectively until steady state conditions prevail. If B is suddenly reduced to 0°C and maintained at 0°C, find the temperature at a distance x from A at time t. (8)

9. Solve the Laplace equation $\frac{2u}{x^2} - \frac{2u}{y^2} [0]$ subject to the conditions u(0, y) = u(l, y) = (x, 0) = 0 and $u(x, a) = \sin(n / a/l)$. (8)

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-76254

(S1)-2785

Download all NOTES and PAPERS at StudentSuvidha.com