Roll No. $\square$
Total No. of Questions: 09

# B.Tech (Sem. - 1) <br> MATHEMATICS-I <br> Subject Code: BTAM-106-18 <br> M Code: 75368 <br> Date of Examination : 11-01-2023 

Time: 3 Hrs.
Max. Marks: 60

## INSTRUCTIONS TO CANDIDATES:

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION - B \& C have FOUR questions each, carrying EIGHT marks each.
3. Attempt any FIVE questions from SECTION B \& C, selecting atleast TWO questions from each of these SECTIONS B \& C.

## SECTION-A

1. Answer the following:
a) Define a vector space.
b) If $A$ and $B$ are square matices. Is $A B=B A$ ? Justify.
c) If $A$ and $B$ are symfetric matrices, then show that $A B-B A$ is skew-symmetric.
d) Define eigergalues of a matrix.
e) Find the length of the Helix traced by

$$
r(t)=a \cos t \mathbf{i}+a \sin t \mathbf{j}+c t \mathbf{k}, \quad a>0,0 \leq t \leq 2 \pi
$$

f) Find the unit normal vector to the surface $x y^{2}+2 y z=8$ at the point $(3,-2,1)$.
g) Define divergence of a vector field.
h) Let $f$ be a differentiable scalar field. Then calculate the value of $\nabla \times(\nabla f)$.
i) Find the length of the arc given by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}, \quad 0 \leq t \leq \pi / 2$.
j) Evaluate $\int_{C}\left(x^{2}-y^{2}\right) d s$, where $C$ is the curve defined by $x=3 \cos t, y=3 \sin t, 0 \leq t \leq$ $2 \pi$.

## SECTION B

2. a) If $x, y$ and $z$ are different and

$$
\left|\begin{array}{ccc}
x & x^{2} & 1+x^{3} \\
y & y^{2} & 1+y^{3} \\
z & x z^{2} & 1+z^{3}
\end{array}\right|=0
$$

then show that $1+\mathrm{xyz}=0$
b) Solve the following system of equations using Gauss elimination method.

$$
x-y+z=1, \quad 2 x+y-z=2, \quad 5 x-2 y+2 z=5
$$

3. a) Examine whether the following set of vectors are linearly independent.

$$
(1,2,3,4),(2,0,1,2),(3,2,4,2)
$$

b) Find the inverse of the matrix by using Gauss-Jordan method.

$$
\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 3 & 3 \\
0 & 1 & 2
\end{array}\right]
$$

4. Find all the eigenvalues and the corresponding eigenvectors of the following matrix.

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right]
$$

5. a) The eigenvalues of $3 \times 3$ matrix $A$ corresponding to the eigenvalues $1,2,3$ are $[-1,-1,1]^{t},[0,1,0]^{t},[0,-1,1]^{t}$ respectively. Find the matrix $A$
b) Prove that the eigenvectorisf a symmetric matrix are real

## SECTION C

6. a) Find directional derivative of the function $f(x, y)=x^{2} y^{3}+x y$ at a point $(2,1)$ in the direction of a unit vector that makes angle $\pi / 3$ with x -axis.
b) If $\mathbf{a}$ is a constant and $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, show that $\operatorname{curl}(\mathbf{a} \times \mathbf{r})=2 \mathbf{a}$
7. a) Show that the vector field $\mathbf{v}=\left(y^{2}-x^{2}+y\right) \mathbf{i}+x(2 y+1) \mathbf{j}$ is irrotational and find a scalar function $f(x, y, z)$ such that $\mathbf{v}=\operatorname{grad} \boldsymbol{f}$
b) If $f(x, y)=x^{2}-x y-y+y^{2}$, find all points where the directional derivative in the direction $\mathbf{b}=(\mathbf{i}+\sqrt{3} \mathbf{j}) / 2$ is zero.
8. a) Evaluate $\int_{C}(x+y) d x-x^{2} d y+(y+z) d z$ where $C$ is $x^{2}=4 y, z=x, 0 \leq x \leq 2$
b) Find the work done by the force $\mathbf{F}=-x y \mathbf{i}+y^{2} \mathbf{j}+z \mathbf{k}$ in moving a particle over a circular path $x^{2}+y^{2}=4, z=0$ from $(2,0,0)$ to $(0,2,0)$.
9. Verify Green's theorem for $f(x, y)=e^{-x} \sin y, g(x, y)=e^{-x} \cos y$ and $C$ is the square with vertices at $(0,0),(\pi / 2,0),(\pi / 2, \pi / 2),(0, \pi / 2)$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

