Roll No. \square Total No. of Pages : 03
Total No. of Questions: 09
B.Tech (Food Technology) (2018 \& Onwards) (Sem.-1)

MATHEMATICS-I
Subject Code : BTAM-106-18
M.Code : 75368

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B \& C have FOUR questions each.
3. Attempt any FIVE questions from SECTION B \& C carrying EIGHT marks each.
4. Select atleast TWO questions EACH from SECTION - B \& C.

SECTION-A

1. Answer briefly :
a) Define rank of a matrix.
b) For any nonsingular matrix $A=\left(a_{i j}\right)$ of order n, show that $|\operatorname{Adj}(A)|=|A|^{n-1}$
c) Determine the valutsor k for which the system of equations

$$
0_{0} k y+z=0, k x+3 y-k z=0,3 x+y-z=0
$$

has a nontyial solution.
d) Define orthogonal matrices.
e) Is the following matrix diagonalizable? Give reason to your answer.

1	1	0
0	1	1
0	0	1

f) Find the length of the following curve

$$
r(t)=a \cos ^{3} t \mathrm{i}+a \sin ^{3} t \mathrm{j}, 0 \leq t \leq \quad 2
$$

g) Find gradient of the scalar field $f(x, y, z)=x^{2} y^{2}+x y^{2}-z^{2}$ at $(3,1,1)$
h) Define curl of a vector field.
i) Find the length of the $\operatorname{arc} r(t)=3 \cos t \mathrm{i}+3 \sin t \mathrm{j}, 0 \leq t L \quad /$
j) Evaluate $\int_{C} x^{2} y d s$, where C is the curve defined by $x=\cos t, y=\sin t, 0 \leq t \leq \not 2$.

SECTION-B

2. a) Show that:

$$
\left|\begin{array}{rrr}
\square a^{2} & a b & a c \\
a b & \square b^{2} & b c \\
a c & b c & \square c^{2}
\end{array}\right| \square 4 a^{2} b^{2} c^{2}
$$

b) Solve the following system of equations

$$
x-y+3 z=3,2 x+3 y+z=2,3 x+2 y+4 z=5
$$

3. a) Use Gauss Jordan method to find the inverse of the matrix
b) For what vaties of k the following set of vectors form a basis in ${ }^{3}$.

$$
\{(k, 1-k, k),(0,3 k-1,2),(-k, 1,0)\} .
$$

4. Find all the eigen values and the corresponding eigenvectors of the following matrix.

$$
\left.\begin{array}{rrr}
1 & 2 & 2 \\
0 & 2 & 1 \\
@ 1 & 2 & 2
\end{array} \right\rvert\,
$$

5. a) The eigen values of 3×3 matrix A corresponding to the eigenvalues $1,1,3$ are $[1,0,-1]^{t},[0,1,-1]^{t},[1,1,0]^{t}$ respectively. Find the matrix A.
b) Prove that eigen values of a skew-symmetric matrix are zero or purely imaginary.

SECTION-C

6. a) Find directional derivative of the function $f(x, y, z)=\frac{2}{x} y+4 x y z+\frac{2}{z}$ at a point $(1,2,3)$ in the direction of $3 i+4 j-5 k$.
b) If $r=x i+y j+z k$ and $r=|r|$, show that $\operatorname{div}\left(r / r^{3}\right)=0$.
7. a) For the vector field $v=x y z(y z i+x z j+x y k)$ find a scalar function $f(x, y, z)$ such that $v=\nabla f$.
b) Find the angle between the surface $z=x^{2}+y^{2}$ and $z=2 x^{2}-3 y^{2}$ at the point $(2,1,5)$
8. a) Show that $\int_{C}(y z \square 1) d x \square\left(z \square x z \square z^{2}\right) d y \square(y \square x y \square 2 y z) d z \quad$ is independent of the path of integration from $(1,2,2)$ to $(2,3,4)$. Evaluate the integral.
b) Evaluate the integral of $v=x^{2} i-2 y j+z^{2} k$ over the straight line path from $(-1,2,3)$ to $(2,3,5)$.
9. Find the work done by the force $\mathrm{F}=\left(x^{2}-y^{2}\right) i+\left(x^{2}+y^{2}\right) j$ in moving a particle along a closed path C bounding the region $x^{2}+y^{2} \mid 16, x^{2}+y^{2}=4, x$ 百 0 .

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

