Roll No. \square
Total No. of Questions: 07
BCA (2014 to 2018)/B.Tech. (CSE) (Sem.-1)

B.Sc.(IT) (2015 to 2018)
 MATHEMATICS - I
 Subject Code : BSIT/BSBC-103
 M.Code : 10045

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1. Write briefly:
a) If $\mathrm{A}=\{1,2, a, b\}$, determine the following sets $(i) \mathrm{A}--(i i) \mathrm{A}-\{1,2\}$.
b) Given an example of a (idation which is reflexive and symmetric but not transitive.
c) Find relatio $\left.\quad \begin{array}{lll}1 & 0 & 0 \\ & 1 & 1 \\ & \text { (11) matrix representation of } R \text { is } & 1 \\ 0\end{array} \right\rvert\,$.
d) Prove that $p \wedge(q \vee r)=(p \wedge q) \vee(p \wedge r)$
e) Use quantifiers to show that $\sqrt{3}$ is not a rational number.
f) Define Planer and Complete Graph.
g) List two difference between Tree and Graph.
h) Find order of the recurrence Relation $\mathrm{T}(\mathrm{K})=2 \mathrm{~T}(k-1)-k \mathrm{~T}(\mathrm{~K}-3)$.
i) Define recurrence relation with examples.
j) Prove that the maximum number of edges of simple graph is $\frac{n(n \square 1)}{2}$.

SECTION-B

2. a) State and prove De Morgan's law for sets.
b) Let m be a given fixed positive integer. Let $\mathrm{R}=\{(a, b): a, \Varangle \mathrm{Z}$ and $a-b$ is divisible by $m\}$, show that R is an equivalence relation on Z .
3. a) Prove validity of argument :

If man is bachelor, he is happy.
Therefore Bachelor dies young.
b) By the principle of mathematical induction, prove the following for each $n \quad \mathcal{O N}_{\mathrm{N}}: 1.3$

$$
+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2} \square 6 n \square 1\right)}{3}
$$

4. a) Find minimal spanning tree of weighted graph
b) State and orove five colour theorem.
5. Solve recurrence relation $S(K+2)-4 S(K)=K^{2}+K-1$.
6. a) Prove that simple graph with k-components and n vertices can have at the most of $\frac{(n \square k)(n \square k \square 1)}{2}$ edges.
b) Obtain recurrence relation of $S(K)=2 \cdot 4^{k}-5 \cdot(-3)^{k}$ of second order.
7. If $\mathrm{R}=\{(a, b):|a-b|=1\}$ and $\mathrm{S}=\{(a, b): a-b$ is even $\}$ are two relation on $\mathrm{A}=\{1,2$, $3,4\}$. Then draw digraph of R and S. And show that $R^{2}=S^{2}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

