Roll No.

Total No. of Pages: 03

Total No. of Questions: 18

B.Tech. (Agricultural Engg. / Automation & Robotics / Automobile Engg. / BT / CE / Computer Engg. / CSE / Electrical & Electronics Engg. / EE / ECE / Electronic & Electrical Engg. / FT / IT / ME) (2018 & Onwards) (Sem.-1,2)

CHEMISTRY-I

Subject Code: BTCH-101-18 M.Code: 75343

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Answer briefly:

- 1. What do you understand by effective nuclear charge?
- 2. Why d and f orbital Now poor shielding effect?
- 3. What is the essertial condition for a molecule to be IR active?
- 4. What is isomerism?
- 5. How do Vander Waals interactions occur?
- 6. Can oxidation state be negative? Discuss.
- 7. How many signals would you expect to see in the ¹H NMR spectrum of the following:

- 8. What are the shapes PCl_5 and H_2O ?
- 9. Define entropy and gibbs free energy.

1 | M-75343 (S1)-2229

10. Write down the Nernst equation and define electric potential.

SECTION-B

- a) Obtain the time-dependent Schrödinger wave equation for a particle. (6)
 - b) Give the physical meaning of wave function. (2)
- 12. Write short notes on:
 - a) Shielding and deshielding of protons (4)
 - b) Factors affecting vibrational frequency (4)
- 13. a) What is crystal field theory? How does this theory account for the fact that $[CoF_6]^{3-}$ is paramagnetic but $[Co(NH_3)_6]^{3+}$ is diamagnetic though both are octahedral. (6)
 - b) Discuss the role of doping on the band structure of solids. (2)
- 14. a) Derive the van der Waals equation for describing P-V-T relationship in real gases. (5)
 - b) Explain the different type of molecular forces. (3)

SECTION-C

15. a) Calculate the solubility product of AgBr in water at 25°C from the cell: (4)

$$a. Ag, Ag^+Br_{(sat,sol)} \mid AgBr_{(s)}, Ag$$

The standard potentials are $E^{\circ}_{AgBr,Ag} = 0.07V$; $E^{\circ}_{Ag} + _{Ag} = 0.80V$

b) Calculate the standard free energy change (ΔG°) of the reaction : (4)

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \quad \Delta H^{\circ} = -282.84kJ$$

The standard entropy of $CO_2(g)$, CO(g) and $O_2(g)$ are 213.80,197.90 and 205.01 J K mol^{-1} , respectively. Is this reaction feasible at standard state?

- 16. a) Discuss the molecular geometries of the following: (4)
 - i) BCl₃
 - ii) PCl₅

2 | M-75343 (S1)-2229

(Atomic number: B = 5, P = 15) (4)

- b) What is effective nuclear charge? Which element has the highest effective nuclear charge? (2)
- c) What is ionization energy? Which elements have the highest ionization energy? (2)
- 17. Explain the following terms:

 (4×2)

- a) Chirality
- b) Enatiomers
- c) Diastereomers
- d) Optical activity
- 18. a) Discuss the synthesis of a commonly used drug molecule by taking suitable example. (4)
 - b) Discuss the S_N2 mechanism of alkvl halides in terms of kinetics, stereochemistry and reactivity of alkyl halides. (4)

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

3 M-75343 (S1)-2229