Roll No.

3003

B. Tech. 2nd Semester (CSE) Examination – July, 2021

SEMICONDUCTOR PHYSICS

Paper: BSC-PHY-103-G

Time: Three hours] .

[Maximum Marks: 75

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. Question No. 1 is compulsory. All questions carry equal marks.

1. Attempt any six parts:

 $2.5 \times 6 = 15$

- (a) When does an intrinsic semiconductor behaves as an insulator? Explain.
- (b) Explain the variation conductivity of semiconductor with temperature.
- (c) What is the phonon scattering? Explain.

3003-1254(P-4)(Q-9)(21)

P. T. O.

- (d) What is the value of surface potential under flat band condition?
- (e) What is the difference between Ohmic and . Rectifying junction?
- (f) What do you mean by effective mass of an electron?
- (g) What are heterojunctions?

UNIT - I

- 2. Discuss the Kronig-Penny model for the motion of an e in a periodic potential. What is meant by the density of energy states? Derive an expression.
- (a) What is phonon scattering? Explain how this scattering mechanism affects mobility of carrier. 5
 - (b) Explain direct and indirect band gaps and also give examples of materials related with these band gaps.
 10

UNIT - II

(a) Obtain an expression for carrier density of an intrinsic semiconductors. Explain how the resistivity of an intrinsic semiconductor varies with temperature.

3003- -(P-4)(Q-9)(21) (2)

- (b) Calculate the intrinsic carrier concentration in GaAs at T = 450 K. Given that $N_C = 4.7 \times 10^{17}$ c/m^3 ; $N_V = 7 \times 10^{18}$ cm⁻³ at T = 300 K, Eg = 1.42 eV.
- 5. (a) Explain Schottky effect. Show that actual Schottky barrier height proportionately related to position of maximum barrier height due to Schottky effect.
 - (b) Desine an Ohmic contact for n-type GaAs using InAs with an intervening graded in InGaAs region.

UNIT -- III

- 6. (a) Explain the concept of density of states for photons. https://www.mdustudy.com
 - (b) Define spontaneous, stimulated emission
 - (c) How optical transitions takes place it alk s/c?
- 7. (a) State and explain Fermi's Golden Rule.

(b) What is photovoltaic effect?

3003--(P-4)(Q-9)(21)

P. T. O.

UNIT - IV

- 8. (a) What are Vander Paw measurements for carrier density, resistivity and hall mobility?
 - (b) Write parameter extraction from diode I-V characteristics. 6
- 9. Write and explain design fabrication characterization techniques for quantum wells, wires and dots.

3003--(P-4)(Q-9)(21) (4)