- **7.** Differentiate the following w.r.t. *x*:
 - (i) $\frac{e^x \log x}{x^2}$

- (ii) x^x
- (iii) $\tan^{-1}\left(\frac{a-x}{1+ax}\right)$
- (iv) $\sqrt{\frac{(x-a)(x-b)}{(x-p)(x-q)}}$

UNIT - IV

- **8.** Evaluate the following:
 - $(i) \qquad \int \frac{x^4 + 1}{x + 1} dx$

- (ii) $\int \frac{dx}{1 + 2\cos x}$
- 9. Evaluate the following:
 - (i) $\int_{0}^{\pi/2} x \sin^2 x$

(ii) $\int \sqrt{1+2x-x^2} \, dx$

Roll No.

97663

BCA 1st Semestwer (New) Examination – November, 2019

MATHEMATICS

Paper: BCA-103

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt *five* questions in all, selecting *one* question from each Unit. Q. No. 1 is *compulsory*.

- 1. (a) Given that $A = \{0, 1, 2, 3, 4, 5\}$, $B = \{1, 3, 5\}$. Find A B.
 - (b) If $\begin{bmatrix} x & 3x-y \\ 2x+z & 3y-w \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 4 & 7 \end{bmatrix}$, find x, y, z, w.
 - (c) If $f(x) = x^5 \frac{1}{x^5}$, find the value of $f(x) + f\left(\frac{1}{x}\right)$.

97663-8150-(P-4)(Q-9)(19)

P. T. O.

, (d) Find
$$\lim_{x\to 0} \frac{1-\cos x}{x}$$
.

- (e) If $y = (1 + x) \sqrt{x}$, find $\frac{dy}{dx}$.
- (f) If $y = \sin \sqrt{x}$, find $\frac{dy}{dx}$.
- (g) Evaluate $\int (3x-4)^{1/3} dx$.
- (h) Evaluate $\int_{-1+x^3}^{3x^2} dx$.

- 2. (a) Prove that $(A \cap B)' = A' \cap B'$
 - (b) In a group of 400 people, 250 can speak English only and 70 can speak Hindi only. Find:
 - (i) How many can speak both English and Hindi?
 - (ii) How many can speak English?
 - (iii) How many can speak Hindi?
- 3. (a) Prove that:

$$\begin{vmatrix} 1 & x & x^3 \\ 1 & y & y^3 \\ 1 & z & z^3 \end{vmatrix} = (x-y)(y-z)(z-x)(x+y+z)$$

(b) Solve
$$2x + 3y + 3z = 5$$
, $x - 2y + z = -4$, $3x - y - 2z = 3$.

UNIT - II

- **4.** (a) In N \times N, show that the relation defined by (a, b)R(c, d) if and only if ad = bc is an equivalence relation.
 - (b) If $f, g: R \to R$ are defined respectively by $f(x) = x^2$ +3x + 1, g(x) = 2x - 3, find (i) fog (ii) gof (iii) fof (iv) gog.
- 5. (a) Find:
 - (i) $\lim_{x\to 0} \frac{\sin x \tan x}{(e^x 1)}$ (ii) $\lim_{x\to 0} \frac{\sqrt{1 + x 1}}{x}$
 - (b) Show that $f(x) = \frac{1}{x-a}$ has a discontinuity of second kind at x = a.

UNIT - III

- **6.** (a) Derivative of $\sin x$ from first principle.
 - (b) Differentiate the following w.r.t. x:

(i)
$$\frac{x^2-1}{(x^2+7x+1)}$$

(i)
$$\frac{x^2-1}{(x^2+7x+1)}$$
 (ii) $\frac{2}{x+1}-\frac{x^2}{3x-1}$

97663-8150-(P-4)(Q-9)(19)

(3)

P. T. O.