JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year II Semester Examinations, June - 2022

MATHEMATICS - III
(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)
Time: 3 Hours
Max. Marks: 75

Answer any five questions

 All questions carry equal marks1.a) For the continuous probability function $f(x)=k x^{2} e^{-x}$ when $x \geq 0$, find (i) k (ii) Mean (iii) Variance.
b) Derive the mean and variance of random variable X having probability distribution $f(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x=0,1,2, \ldots, \lambda>0$
2.a) Obtain the moment generating function of the random variable X having the probability density function $f(x)=\left\{\begin{array}{l}x, 0 \leq x \leq 1 \\ 2-x, 1 \leq x \leq 2 \\ 0, \text { elsewhere }\end{array}\right.$
b) Suppose that the temperature is normally distributed with expectation $50{ }^{\circ} \mathrm{C}$ and variance $4^{\circ} \mathrm{C}$. What is the probability that the temperature T will be between $48{ }^{\circ} \mathrm{C}$ and $58{ }^{\circ} \mathrm{C}$.
3.a) State Central Limit Theorgrn and using it approximate $\mathrm{P}(0.03 \leq \bar{X} \leq 0.15)$, where \bar{X} is the mean of a rand sample size $\mathrm{n}=15$ from a distribution whose PDF is $f(x)=\frac{3}{2} x^{2},-k, \quad<1$.
b) (i) Find the value of $P\left(-t_{0.025}<T<t_{0.05}\right)$
(ii) Find ' k ' such that $P(k<T<-1.761)=0.045$.
4.a) A sample of 400 items is taken from a population whose standard deviation is 15 . The mean of the sample is 25 . Test whether the sample has come from a population with mean 26.8. Also calculate that 98% confidence limits of the population mean.
b) A random sample of size 25 from a normal population has the mean $=47.5$ and the standard deviation $s=8.4$. Does this information support or refute the claim that the mean of the population is $\mu=42.1$?
5.a) A die is tossed 180 times with the following results.

x	1	2	3	4	5	6
f	28	36	36	30	27	23

Is it a balanced die?
b) Suppose we wish to study the effect of computer-aided instruction (CAI) on the performance of college students. We randomly divide the incoming class into three sections. Section A is taught in a conventional way, Section B is nearly completely automated, and in Section C a mixed approach is used.
The following test scores are observed:

Section A	Section B	Section C
77	70	79
68	69	74
72	73	77
75	74	80
60	59	73
59	63	60
82	80	79

Perform analysis of variance and determine whether the differences among the means obtained for the three sections are significant at $\alpha=0.05$.
6.a) Find the real root of the equation $x^{4}+2 x^{3}-x-1=0$ by Regula Falsi method correct to three decimal places.
b) Using Gauss Seidel method and solve the equations
$4 x+y+z=7$,
$8 x+5 y+3 z=21$,
$2 x+y+6 z=10$
7. Using least squares med fit a quadratic curve to the following data.

x	-2	-1	0	1	2
$\mathrm{f}(\mathrm{x})$	13	60	3	4	9

8.a) Evaluate $\int_{0}^{1} \frac{d x}{x^{3}+x+1}$ using i) Trapezoidal rule ii) Simpson's $3 / 8^{\text {th }}$ rule.
b) Using R-K method of order four, solve $y^{\prime \prime}-x y^{\prime}-y=0, y(0)=1, y^{\prime}(0)=0$ to find $y(0.2)$ and $y^{\prime}(0.2)$.

