Code No: 132AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, June - 2022 **MATHEMATICS - III** (Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE,

MSNT)

Time: 3 Hours

Max. Marks: 75

R16

Answer any five questions All questions carry equal marks

- For the continuous probability function $f(x) = kx^2e^{-x}$ when $x \ge 0$, find (i) k (ii) Mean 1.a) (iii) Variance.
- **b**) Derive the mean and variance of random variable X having probability distribution $a^{-\lambda} x^{x}$ [9+6]

$$f(x) = \frac{e^{-\kappa}}{x!}, x = 0, 1, 2, ..., \lambda > 0$$

Obtain the moment generating function of the random variable X having the probability 2.a) $x, 0 \le x \le 1$ density function $f(x) = \begin{cases} 2 - x, 1 \le x \le 2 \end{cases}$ 0.elsewhere

Suppose that the temperature is normally distributed with expectation 50 ^oC and variance b) 4 0 C. What is the probability that the temperature T will be between 48 0 C and 58 0 C.

[8+7]

- State Central Limit Theorem and using it approximate P($0.03 \le \overline{X} \le 0.15$), where \overline{X} is 3.a) the mean of a random sample size n=15 from a distribution whose PDF is $f(x) = \frac{3}{2}x^2, -k$ 1.
 - (i) Find the value of $P(-t_{0.025} < T < t_{0.05})$ b) (ii) Find 'k' such that P(k < T < -1.761) = 0.045. [8+7]
- A sample of 400 items is taken from a population whose standard deviation is 15. The 4.a) mean of the sample is 25. Test whether the sample has come from a population with mean 26.8. Also calculate that 98% confidence limits of the population mean.
 - A random sample of size 25 from a normal population has the mean = 47.5 and the b) standard deviation s = 8.4. Does this information support or refute the claim that the mean of the population is $\mu = 42.1$? [7+8]

Download all NOTES and PAPERS at StudentSuvidha.com

5.a) A die is tossed 180 times with the following results.

Х	1	2	3	4	5	6
f	28	36	36	30	27	23
s it a	bala	nced	die?			

b) Suppose we wish to study the effect of computer-aided instruction (CAI) on the performance of college students. We randomly divide the incoming class into three sections. Section A is taught in a conventional way, Section B is nearly completely automated, and in Section C a mixed approach is used.

The following test scores are observed:

Section A	Section B	Section C	
77	70	79	
68	69	74	
72	73	77	
75	74	80	
60	59	73	
59	63	60	
82	80	79	

Perform analysis of variance and determine whether the differences among the means obtained for the three sections are significant at $\alpha = 0.05$. [7+8]

- 6.a) Find the real root of the equation $x^4 + 2x^3 x 1 = 0$ by Regula Falsi method correct to three decimal places.
 - b) Using Gauss Seidel method and solve the equations 4x + y + z = 7, 8x + 5y + 3z = 21, 2x + y + 6z = 10

[7+8]

- 8.a) Evaluate $\int_{0}^{1} \frac{dx}{x^{3} + x + 1}$ using i) Trapezoidal rule ii) Simpson's $3/8^{th}$ rule.
 - b) Using R-K method of order four, solve y'' xy' y = 0, y(0) = 1, y'(0) = 0 to find y(0.2) and y'(0.2). [7+8]

--00000--

Download all NOTES and PAPERS at StudentSuvidha.com