JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, June - 2022 MATHEMATICS - II

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, ECM, AE, MIE, PTM, CSBS, CSIT, ITE, CE(SE), CSE(CS), CSE(AIML), CSE(DS), CSE(IOT), CSE(Networks))

Time: 3 Hours
Max. Marks: 75
Answer any five questions All questions carry equal marks
1.a) Suppose that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a temperature of $200{ }^{0} \mathrm{~F}$ when freshly poured, and 1 min later has cooled to $190{ }^{\circ} \mathrm{F}$ in a room at $70^{\circ} \mathrm{F}$, determine when the coffee reaches a temperature of $150{ }^{0} \mathrm{~F}$.
b) Find an integrating factor and solve the given equation

$$
\begin{equation*}
\left(3 x^{2} y+2 x y+y^{3}\right)+\left(x^{2}+y^{2}\right) y^{\prime}=0 . \tag{8+7}
\end{equation*}
$$

2. Solve the following differential equations, where $p=\frac{d y}{d x}$
a) $y^{2} p^{2}-3 x p+y=0$
b) $x^{2}(y-p x)=y p^{2}$
3.a) Solve $\frac{d^{2} y}{d x^{2}}+2 y=x^{2} e^{3 x}+e^{x} \cos 2 x$.
b) Use the method of variation θ parameters to solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
4.a) Solve $(5+2 x)^{2} y^{\prime \prime} \theta^{\prime}(5+2 x) y^{\prime}+8 y=2(2 x+5)^{2}$.
b) Solve $x^{2} y^{\prime \prime}-x{ }^{\prime}{ }^{\prime \prime}+y=\log x$.
5.a) Find the volume of the region bounded above by the paraboloidz $=x^{2}+y^{2}$ and below by the square R : $-1 \leq x \leq 1,-1 \leq y \leq 1$.
b) Find the volume using Triple Integral for the region between the cylinder $z=y^{2}$ and the xy-plane that is bounded by the planes $x=0, x=1, y=-1, y=1$.
6.a) Prove that $A=\left(x^{2}-y z\right) i+\left(y^{2}-z x\right) j+\left(z^{2}-x y\right) k$ is irrotational and find the scalar potential f such that $A=\nabla f$.
b) Evaluate $\nabla^{2} \bar{F}$ if $\bar{F}=r^{a} \bar{r}$.
7.a) What is the directional derivative of $f=x y^{2}+y z^{3}$ at the point $(2,-1,1)$ in the direction of the normal to the surface $x \ln z-y^{2}-4$ at $(-1,2,4)$.
b) Prove that $\nabla(A \bar{B})=(\bar{B} \cdot \nabla) A \bar{F}+\bar{B} \bar{B}+\bar{B} \times(\nabla \times A \bar{F}+A \times(\nabla \times \bar{B})$.
8.a) Prove that i) $\bar{F}=\left(4 x y-3 x^{2} z^{2}\right) \bar{i}+2 x^{2} \bar{j}-2 x^{3} z \bar{k}$ is a conservative field and find its scalar potential ii) Find the work done in moving an object in this field from $(1,1,1)$ to $(0,0,0)$.
b) Use Green's theorem to evaluate $\oint\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ along the curve C : the boundary of the region defined by $x=0, y=0, x+y=1$.
[6+9]
--00O00--
