JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester (Special) Examinations, January - 2021
 MATHEMATICS-II
 (Common to CE, EEE, ECE, CSE, IT)

Time: 2 hours
Max. Marks: 75

Answer any five questions
 All questions carry equal marks

1.a) Solve $3 x y^{2}-y^{3} d x-2 x^{2} y-x y^{2} d y=0$.
b) Radium decomposes at a rate proportional to the quantity present at time t. Suppose that it is found that in 25 years approximately 1.1% of certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose.
[7+8]
2.a) Solve $y-2 p x=\tan ^{-1} x p^{2}$; where $p=\frac{d y}{d x}$.
b) A body of temperature $80{ }^{0} \mathrm{~F}$ is placed in a room of constant temperature $50{ }^{0} \mathrm{~F}$ at time $t=0$. At the end of 5 minutes the body has cooled to a temperature of $700^{0} \mathrm{~F}$. After how many minutes will the temperature of the body be within ${ }^{9} 1 \mathrm{~F}$ of the constant 58 F temperature of the room?
3.a) Using the method of variation of parameters solve $\frac{d^{2} y}{d x^{2}}+4 y=\tan 2 x$.
b) \quad Solve $\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=x^{2} \sin x+\mathrm{e}^{2 x}+3$.
4.a) Evaluate $A^{x}+{ }^{2} d x d y$; where R is the parallelogram in the $x y$-plane with vertices $(1,0),(3,1),(\Omega(2),(0,1)$ using the transformation $u=x+y, v=x-2 y$.
b) Evaluate $a y \frac{x}{x^{2}+y^{2}} d x d y$ by changing the order of integration.
5.a) A vector field is given by $A=x^{2}+x y^{2} i+y^{2}+x^{2} y j$, show that the field is irrotational and find the scalar potential.
b) Find the maximum value of the directional derivative of $\emptyset=x^{2} y z$ at $(1,4,1)$.
6.a) Evaluate ${ }_{s} A . n d s$ where $A=x+y^{2} i-2 x j+2 y z k$ and S is a surface in the plane $2 x+y+2 z=6$ in the first octant.
b) If $\bar{F}=x^{3} i+x^{2} y j+x y z^{2} k$, find $\operatorname{Curl} \bar{F}$.
7. State and verify Stokes theorem for the function $f=x^{2} i+x y j$ integrated round the square in the plane $z=0$ whose sides are along the lines $x=0=y, x=a=y$.
8. State and verify Gauss divergence theorem for $f=x^{3}-y z i-2 x^{2} y j+z k$ taken over the surface of the cube bounded by the planes $x=y=z=a$ and coordinate planes.
[15]

