JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech I Year II Semester Examinations, May - 2019

MATHEMATICS-II
(Common to EEE, ECE, CSE, EIE, IT, ETM)
Time: 3 hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A
(25 Marks)
1.a) Find $L^{-1}\left(\frac{1}{(s-2)^{2}}\right)$.
b) Define Unit step function and find its Laplace transform.
c) Evaluate $\Gamma\left(-\frac{3}{2}\right)$.
d) Evaluate $\int_{0}^{1} x^{5}(1-x)^{6} d x$
e) Using triple integral, find the volume of a rectangular box whose length is 6 ft , breadth is 5 ft and height is 4 ft .
f) Evaluate $\int_{10}^{2} \int_{0}^{x}\left(x+y^{2}\right) d y d x$
g) Define solenoidal vactor.
h) Prove that \bar{r} is arfortational where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$
i) State stokes thorem.
j) Evaluate $\int_{V}^{0} d i v f d x d y d z$ where v is the volume of the sphere whose radius is ' a ' units and $\bar{f}=x \bar{i}+y \bar{j}+z \bar{k}$.

PART-B

(50 Marks)
2.a) Find the Laplace transform of $(\sin t+\cos t)^{2}$
b) Find the inverse Laplace transform of $\frac{1}{\left(s^{2}+1\right)(s+1)}$.
3. Solve $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t}, y(0)=1, y^{\prime}(0)=1$ using Laplace transform.
4.a) Evaluate $\int_{0}^{\infty} e^{-x / 3} x^{3} d x$.
b) Evaluate $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{4}}}$.

OR

5.a) Evaluate $\int_{0}^{\infty} e^{-x^{3}} x^{7} d x$.
b) Evaluate $\int_{0}^{1} \frac{x^{2} d x}{\sqrt{1-x^{4}}}$.
6.a) Evaluate $\int_{0}^{2} \int \sqrt{2 x-x^{2}}\left(x^{2}+y^{2}\right) d x d y$ by changing to polar coordinates.
b) Evaluate $\iint_{R} y d x d y$ where R is the region bounded by the parabola $y^{2}=4 x$ and $x^{2}=4 y$.

OR

7.a) Evaluate $\iiint x y^{2} z d x d y d z$ taken through the positive octant of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
b) Evaluate $\int_{0}^{a x} \int_{0}^{x+y} \int_{0}^{x+y+z} d x d y d z$.
8.a) Find the directional derivative to the surface $f(x, y, z)=x y^{2} z-4$, at the point $(1,-1,2)$ along $\mathrm{i}+\mathrm{j}+\mathrm{k}$.
b) A butterfly is located at $(2,-1,3)$ and desires to fly towards fragrance surface $f(x, y, z)=x^{2}+y z^{2}$. Along which direction should it fly to get fragrance at the earliest?

OR
9.a) Show that $\nabla^{2} r^{n}=n(n-1) r^{n-2}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $|\bar{r}|^{2}=r$.
b) Prove that $\nabla\binom{1}{0}=-\frac{\bar{r}}{r^{3}}$ where $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$ and $|\bar{r}|^{2}=r$.
10. Verify Greens theorem for $\oint_{C}(y-\sin x) d x+\cos x d y$ where C is the triangle enclosed by the lines $y=0, x=\frac{\pi}{2}$ and $\pi=2 x$.

OR

11. Verify stokes theorem for a vector field defined by $\bar{F}=-y^{3} \bar{i}+x^{3} \bar{j}$ in the region $x^{2}+y^{2} \leq 1, z=0$.
