JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May - 2019 **MATHEMATICS-II** (Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

		(25 Marks)
1.a)	Find $L^{-1}\left(\frac{1}{\left(s-2\right)^2}\right)$.	[2]
b)	Define Unit step function and find its Laplace transform.	[3]
c)	Evaluate $\Gamma\left(-\frac{3}{2}\right)$.	[2]
d)	Evaluate $\int_{0}^{1} x^{5} (1-x)^{6} dx$	[3]
e)	Using triple integral, find the volume of a rectangular box whose len breadth is 5 ft and height is 4 ft.	gth is 6 ft, [2]
f)	Evaluate $\int_{10}^{2} \int_{10}^{x} (x + y^2) dy dx$	[3]
g)	Define solenoidal vector.	[2]
h)	Prove that \overline{r} is an errotational where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$	[3]
i)	State stokes theorem.	[2]
j)	Evaluate $\int_{V} div\bar{f} dx dy dz$ where v is the volume of the sphere whose radius is	'a' units and
	$\bar{f} = x\bar{i} + y\bar{j} + z\bar{k}$.	[3]
	PART-B	(50 Marks)
		(50 10141 K5)
2.a)	Find the Laplace transform of $(\sin t + \cos t)^2$	
b)	Find the inverse Laplace transform of $\frac{1}{(s^2+1)(s+1)}$. OR	[5+5]
3.	Solve $y'' + 2y' + 5y = e^{-t}$, $y(0) = 1$, $y'(0) = 1$ using Laplace transform.	[10]
4.a)	Evaluate $\int_{0}^{\infty} e^{-x/3} x^3 dx$.	

4.a) Evaluate
$$\int_{0}^{1} \frac{x dx}{\sqrt{1-x^4}}$$
. [5+5]
OR

Download all NOTES and PAPERS at StudentSuvidha.com

Max. Marks: 75

1)

5.a) Evaluate
$$\int_0^\infty e^{-x^3} x^7 dx$$
.
b) Evaluate $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}}$. [5+5]

6.a) Evaluate $\int_{0}^{2} \int_{0}^{\sqrt{2x-x^{2}}} (x^{2} + y^{2}) dx dy$ by changing to polar coordinates.

b) Evaluate $\iint_{R} y dx dy$ where R is the region bounded by the parabola $y^2 = 4x$ and $x^2 = 4y$. [5+5]

OR

7.a) Evaluate $\iiint xy^2 z dx dy dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. b) Evaluate $\iint_{ax} \int_{ax}^{x+y} e^{x+y+z} dx dy dz$. [5+5]

- 8.a) Find the directional derivative to the surface $f(x,y,z) = xy^2z 4$, at the point (1, -1, 2) along i+j+k.
 - b) A butterfly is located at (2, -1, 3) and desires to fly towards fragrance surface $f(x,y,z)=x^2+yz^2$. Along which direction should it fly to get fragrance at the earliest?

OR

[5+5]

9.a) Show that
$$\nabla^2 r^n = n(p+1)r^{n-2}$$
 where $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $|\overline{r}|^2 = r$.

- b) Prove that $\nabla \left(\frac{1}{r^3} \right)^2 = -\frac{r}{r^3}$ where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$ and $|\bar{r}|^2 = r$. [5+5] b) Verify Greens theorem for $\oint_C (y - \sin x) dx + \cos x dy$ where C is the triangle
- 10. Verify Greens theorem for $\oint_C (y \sin x) dx + \cos x dy$ where C is the triangle enclosed by the lines $y = 0, x = \frac{\pi}{2}$ and $\pi = 2x$. [10]

11. Verify stokes theorem for a vector field defined by $\overline{F} = -y^3 \overline{i} + x^3 \overline{j}$ in the region $x^2 + y^2 \le 1$, z = 0. [10]

Download all NOTES and PAPERS at StudentSuvidha.com