Code No: 152AA

R18

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, May - 2019 **MATHEMATICS-II**

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM) Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a) Solve
$$y = a \ 1 + p^{-2}$$
. [2]

(a) Solve
$$y = a \ 1 + p^{-2}$$
. [2]
b) Solve $\frac{1}{D^2}x^4$. [2]

c) Evaluate
$$\int_{x=1}^{3} \int_{y=0}^{1} xy^2 dy dx.$$
 [2]

d) If
$$r = xi + yj + zk$$
 then evaluate $\nabla^2 r^2$. [2]

e) Find the value of
$$v + i + j + k dV$$
. [2]

f) Find the integrating factor of
$$\frac{dy}{dx} + 2xy = e^{-x^2}$$
. [3]

g) Solve
$$D^3 - 4D^2 y = 5$$
. [3]

h) Find the limits after changing the order of integration for
$$\int_{0}^{b} \int_{0}^{a/b} \sqrt{b^{2}-y^{2}} f(xy)dydx$$
.

i) Find a unit vector regnal to the surface
$$x^3 + y^3 + 3xyz = 3$$
. [3]

j) If
$$F(t) = xi + 2i + zk$$
 then evaluate $\int_{1}^{2} curl F(t) dt$. [3]

PART-B

(50 Marks)

2.a) Solve
$$1 + x^2 \frac{dy}{dx} + 2xy = 4x^2$$
, $y = 0$

b) If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to disappear? [5+5]

OR

3.a) Solve
$$y + y^2 dx + xy dy = 0$$
.

b) Solve
$$x + 2y^3 \frac{dy}{dx} = y$$
. [5+5]

4.a) Solve
$$D^2 + 4$$
 $y = \tan 2x$ by variation of parameters.

b) Solve
$$D^3 + 4D$$
 $y = 5 + \sin 2x$. [5+5]

OR

5.a) Solve
$$D^2 + 4D + 3$$
 $y = e^{e^x}$.
b) Solve $D^2 + 1$ $y = x^2 \sin 2x$.

b) Solve
$$D^2 + 1$$
 $y = x^2 \sin 2x$. [5+5]

- 6.a) Evaluate
- ${0 \atop 0 \atop \log 2} {x \atop x+\log y \atop 0} r^2 \cos \theta \, dr \, d\theta.$ Evaluate 0^{10} b) [5+5]

- Change into polar co-ordinates and evaluate $\begin{bmatrix} \infty & \infty \\ 0 & 0 \end{bmatrix} e^{-x^2 + y^2} dy dx$. 7.a)
 - Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$. b)

[5+5]

- Find the angle between the normal to the surface $xy = {}^{2}zat$ the points (4, 1, 2) and 8.a) (3, 3, -3).
 - Prove that $\nabla \cdot A \times B = B \cdot \nabla \times A A \cdot \nabla \times B$ [5+5]b)

- Find the angle of intersection of the spheres $x^2 + y^2 + z^2 = 39$ and $x^2 + y^2 + z^2 + z^2$ 9.a) 4x - 6y - 8z + 52 = 0 at the point (4, -3, 2).
 - A vector field is given by $A = x^2 + xy^2 i + y^2 + x^2y j$. Show that the field is b) irrotational and find the scalar potential.
- Find the work done in moving a particle in the force field $F = 3x^2i + 2xz y j + zk$ 10. along the straight line from (0, 0, 0) to (2, 1, 3).

- Evaluate $\int_{S} F.n \, ds$ if $F = 2xyi + yz^2j + xzk$ over the parallelepiped x = 0, y = 0, z = 0, x = 2, y = 1, z = 3.
 - b) If $F = 3x^2 2z \ i 4xy \ j 5xk$, Evaluate $v \ curl \ F \ dv$, where v is volume bounded 3x + 2y - 32 3x + 2y - 32by planes x = 0, y = 0, z = 0 and 3x + 2y - 3z = 6. [5+5]