JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year II Semester Examinations, May - 2019
 MATHEMATICS-II

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM)

Time: 3 hours

Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A
1.a) Solve $y=a 1 \overline{+p^{2}}$.
b) Solve $\frac{1}{D^{2}} x^{4}$.
c) Evaluate $\int_{x=1}^{3} \int_{y=0}^{1} x y^{2} d y d x$.
d) If $r=x i+y j+z k$ then evaluate $\nabla^{2} r^{2}$.
e) Find the value of ${ }_{V} i+j+k d V$.
f) Find the integrating factor of $\frac{d y}{d x}+2 x y=e^{-x^{2}}$
g) Solve $D^{3}-4 D^{2} y=5$.
h) Find the limits after changing the order of integration for $\int_{0}^{b a / b} \int_{0}^{\sqrt{b^{2}-y^{2}}} f(x y) d y d x$.
i) Find a unit vector romal to the surface $x^{3}+y^{3}+3 x y z=3$.
j) If $F(t)=x i+a j+z k$ then evaluate ${ }_{1}^{2} \operatorname{curl} F(t) d t$.

PART-B

(50 Marks)
2.a) Solve $1+x^{2} \frac{d y}{d x}+2 x y=4 x^{2}, y 0=0$.
b) If 30% of a radioactive substance disappears in 10 days, how long will it take for 90% of it to disappear?

OR
3.a) Solve $y+y^{2} d x+x y d y=0$.
b) Solve $x+2 y^{3} \frac{d y}{d x}=y$.
4.a) Solve $D^{2}+4 y=\tan 2 x$ by variation of parameters.
b) Solve $D^{3}+4 D \quad y=5+\sin 2 x$.
5.a) Solve $D^{2}+4 D+3 y=e^{e^{x}}$.
b) Solve $D^{2}+1 y=x^{2} \sin 2 x$.
6.a) Evaluate $\begin{array}{ll}\pi & a(1+\cos \theta) \\ 0 & r^{2} \cos \theta d r d \theta \text {. }\end{array}$
b) Evaluate $\begin{array}{llll}\log 2 & x & x+\log y \\ 0 & 0 & 0\end{array} e^{x+y+z} d z d y d x$.

OR

7.a) Change into polar co-ordinates and evaluate ${ }_{0}^{\infty}{ }_{0}^{\infty} e^{-x^{2}+y^{2}} d y d x$.
b) Show that the area between the parabolas $y^{2}=4 a x$ and $x^{2}=4 a y$ is $\frac{16}{3} a^{2}$.
8.a) Find the angle between the normal to the surface $x y={ }^{2} z$ at the points (4, 1, 2) and $(3,3,-3)$.
b) Prove that $\nabla . A \times B=B . \nabla \times A-A . \nabla \times B$.

OR

9.a) Find the angle of intersection of the spheres $x^{2}+y^{2}+z^{2}=39$ and $x^{2}+y^{2}+z^{2}+$ $4 x-6 y-8 z+52=0$ at the point $(4,-3,2)$.
b) A vector field is given by $A=x^{2}+x y^{2} i+y^{2}+x^{2} y j$. Show that the field is irrotational and find the scalar potential.
10. Find the work done in moving a particle in the force field $F=3 x^{2} i+2 x z-y j+z k$ along the straight line from $(0,0,0)$ to $(2,1,3)$.

OR

11.a) Evaluate s F.nds if $F=2 x y i+y z^{2} j+x z k$ over the parallelepiped $\mathrm{x}=0, \mathrm{y}=0$, $\mathrm{z}=0, \mathrm{x}=2, \mathrm{y}=1, \mathrm{z}=3$.
b) If $F=3 x^{2}-2 z i-4 x y j-5 x k$, Evaluate ${ }_{v}$ curl $F d v$, where v is volume bounded by planes $\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$ and $3 \mathrm{x}+2 \mathrm{y}-3 \mathrm{z}=6$.

