Seat	No ·	
OCAL.	INO.:	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 2110014 Date: 06/06/2019

Subject Name: Calculus

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Question No.1 is compulsory. Attempt any four out of remaining six questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Objective Question (MCQ)

Marks 07

(a)

1. For the Jacobian I, value of the $I \cdot I'$ is

(a)1 (b) -1 (3) 0 (4) 2

2. Value of $\frac{dy}{dx}$ for $ax^2 + 2hxy + by^2 = 1$ is $(a)\frac{hx+by}{ax+hy}$ $(b)\frac{ax+hy}{hx+by}$ $(c) -\frac{ax+hy}{hx+by}$ $(d) -\frac{hx+by}{ax+hy}$

3. $u = \sin^{-1}\frac{x}{y}$ is a homogeneous function of degree

- (a) 1/2 (b) 0 (c) 1 (d) -1
- 4. The curve r = 2 is
 - (a) straight line (b) point at distance '2' on initial line
 - (c) circle with centre origin and radius 2 (d) cardioid
- 5. If $x = r\cos\theta$, $y = r\sin\theta$, then which is correct?

(a)
$$r = x^2 + y^2$$
, $\theta = \frac{x}{y}$ (b) $r = \sqrt{x^2 + y^2}$, $\theta = \tan \frac{y}{x}$

(c)
$$r = x^2 + y^2$$
, $\theta = \tan^{-1} \frac{y}{x}$ (d) $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1} \frac{y}{x}$

- 6. Infinite Sequence $\{1,1,1,\dots\}$ is
 - (a) convergent (b) divergent (c) oscillatory (d) None of these
- 7. Infinite Series 1 1 1 + 1 + is
 - (a) convergent (b) divergent (c) oscillatory (d) None of these

(b) 1 Indiania a 1111 1 1

U/

- 1. Infinite series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \frac{1}{5} + \cdots$ is
 - (a) convergent (b) divergent (c) oscillatory (d) None of these
- 2. Curve $(y-1)^2 = x-5$ is symmetric to
 - (a) X-axis (b) line y = -x (c) line y = x (d) Y-axis
- $\lim_{x\to 0} \frac{\tan \pi x}{x}$

(a)
$$\frac{1}{\pi}$$
 (b) 0 (c) ∞ (d) π

- 4. The sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is
 - (a) ∞ (b) 1/2 (c) 2 (d) 1
- 5. The Maclaurin series for the function $(x + 1)^2$ is (a) $1 + x + x^2$ (b) $1 + 2x + x^2$ (c) 1 + x (d) $x + x^2$
- 6. The straight line y = 2 is revolved about x- axis between $0 \ll x \ll 4$. The generated solid is
- (a)cone (b) sphere (c) cuboid (d) cylinder 7. For a series $\sum_{n=1}^{\infty} a_n$, if $\lim_{n\to\infty} a_n \neq 0$, then
 - (a) series is convergent (b) series is divergent
 - (c) sum of series is finite number
 - (d) series is conditionally convergent

Find the Taylor series for $f(x) = \frac{1}{x}$ at a = 2. 03 **Q.2** (b) Is the series absolutely convergent or conditionally convergent? 04 $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ (c) (i) Discuss the convergence of the series 04 $\frac{x}{1\cdot 2} + \frac{x^2}{2\cdot 3} + \frac{x^3}{3\cdot 4} + \cdots$ (ii) Find the Radius of convergence for the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$. 03 (a) Evaluate lim_{x→0} xlogx
 (b) Trace the curve y²(a+x) = x²(a-x), a>0. Q.3 03 04 Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p>1 and divergent 07 if $p \ll 1$. (a) Evaluate $\int_0^3 \frac{dx}{(x-1)^{2/2}}$. 03 **Q.4** (b) Find the equation of the tangent plane and normal line to the surface $x^2 + y^2 + z - 9 = 0$ at (1,2,4). 04 (c) (i)Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$. (ii) Evaluate $\lim_{x \to \frac{\pi}{2}} (1 - \cos x)^{\tan x}$ 04 03 (a) If u = f(x - y, y - z, z - x), prove that $u_x + u_y + u_z = 0$. Q.5 03 (b) Find maximum and minimum values. $f(x, y) = 2(x^2 - y^2) - x^4 + y^4$ 04 (c) If $u = tan^{-1} \left(\frac{x^2 + y^2}{x + y^2} \right)$ prove that

(i) $xu_x + yu_y = \sin 2u$ (ii) $x^2 u_{xx} + 2y u_{xy} + y^2 u_{yy} = 2 \sin u \cos 3u$ 07 (a) The region between the curve $y = \sqrt{x}$, $0 \ll x \ll 4$ and the x-axis is **Q.6** 03 revolved about the x-axis to generate a solid. Find its volume. (b) Using volume by slicing method, find the volume of a cylinder with 04 radius 'r' and height 'h'. Evaluate $\iint_R x \, dx \, dy$; R is triangle (0,0),(1,0),(1,1) using 07 transformations x = u, y = uv. (a) Evaluate $\iint r^3 dr d\theta$ over the area bounded between the circles 0.7 03 $r = 2\cos\theta$ and $r = 4\cos\theta$. (b) Evaluate 04 $11-x(x+y)^2$ $\int \int x \ dz dy dx$ Change the order of integration and evaluate. 07 $\int \int xy \, dy dx$