Paper Id:
199221
Roll No. \square

Total Marks: 100
Time: 3 Hours
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a. Write Cauchy integral theorem for multiply connected region.
b. Define removable singular points with example.
c. Define the coefficients of Skewness.
d. Write the normal equations to $y=a x+\frac{b}{x^{2}}$.
e. Out of 800 families with 5 children each, how many would you expect to have 5 girls.
f. Define Control Charts.
g. Isolate the roots of the equation $x^{3}-4 x+1=0$.
h. Differentiate between order and rate of convergence of an iterative method.
i. Write Euler's formula for solving ordinary differential equation.
j. Write the conditions when LU decomposition method does not work.

SECTION B

2. Attempt any three of the following:
a. Write tha Laurent's expression for $f(z)=\frac{7 z-2}{z^{3}-z^{2}-2 z}$ in the regions.
(i) $0<|z+1|<1$
(ii) $1<|z+1|<2$
(iii) $3<|z+1|$
b. Using least square method, fit a second degree polynomial from the following data:

x	0	1	2	4	5	6	7	8	9
y	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

c. The 9 items of a sample have the following values:
$45,47,50,52,48,47,49,53,51$.
Does the mean of these values differ significantly from the assumed mean 47.5?
d. Show that the Newton-Raphson Method has second order convergence.

Use fourth order Runge -Kutta method to find y (0.2) , Given e. $\frac{d y}{d x}=\# \quad y^{2} ; y(0)=0$.

SECTION C

3. Attempt any one part of the following:
$10 \times 1=10$
(a) Using calculus of residue, evaluate the following integral $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}$.
(b) Determine the analytic function $\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv}$, in terms of z , whose $u-v=e^{x}(\cos y-\sin y)$.
4. Attempt any one part of the following:
$10 \times 1=10$
If the Θ is the acute angle between the two regression lines in the case of two
(a) variables x and y , show that $\tan \theta=\frac{1-r^{2}}{r} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$ where $r, \sigma_{x} \sigma_{y}$ have their usual meanings. Explain the significance of the formula when $\mathrm{r}=0$ and $\mathrm{r}=-1$.
(b) Determine the constants a and b by the method of least square such that $y=$ $a e^{b x}$ fits the following data:

x	2	4	6	8	10
y	4.077	11.084	30.128	81.897	222.62

5. Attempt any one part of the following:
$10 \times 1=10$
(a) The following table gives the number of accidents that took place in an industry during various days of the week. Test if accidents are uniformly distributed over the week:

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Number of Accidents	14	18	12	11	15	14

(b) Prove that Reission distribution is the limiting case of Binomial distribution.
6. Attempt any one part of the following:
(a) Find a real root of the equation $x \log _{10} x=1.2$ using bisection method correct up to three decimals places.
(b) Population of a town as given:

Years(x)	1891	1901	1911	1921	1931
Population(y)	49	60	88	99	120

Estimate the population for the year 1894.
7. Attempt any one part of the following:
(a) Solve the system of equations using crout's method.

$$
2 x+3 y+z=9, x+2 y+3 z=6,3 x+y+2 z=8 .
$$

(b) Compute $\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Simpson's $3 / 8$ rule.

