Paper Id:

199221

Roll No.

B. TECH. (SEM-IV) THEORY EXAMINATION 2018-19 MATHEMATICS-III

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

- $2 \times 10 = 20$
- Write Cauchy integral theorem for multiply connected region. a.
- Define removable singular points with example. b.
- c. Define the coefficients of Skewness.
- d. Write the normal equations to $y = ax + \frac{b}{r^2}$.
- Out of 800 families with 5 children each, how many would you expect to have 5 girls. e.
- Define Control Charts. f.
- Isolate the roots of the equation $x^3 4x + 1 = 0$. g.
- Differentiate between order and rate of convergence of an iterative method. h.
- i. Write Euler's formula for solving ordinary differential equation.
- Write the conditions when LU decomposition method does not work. j.

SECTION B

2. Attempt any three of the following:

- $10 \times 3 = 30$
- Write the Laurent's expression for $f(z) = \frac{7z-2}{z^3-z^2-2z}$ in the regions. (i) 0 < |z+1| < 1 (ii) 1 < |z+1| < 2 (iii) 3 < |z+1|

(i)
$$0 < |z+1| < 1$$

(ii)
$$1 < |z+1| < 2$$

(iii)
$$3 < |z+1|$$

b. Using least square method, fit a second degree polynomial from the following data:

X	0	1	2	4	5	6	7	8	9
у	12.0	10.5	10.0	8.0	7.0	8.0	7.5	8.5	9.0

The 9 items of a sample have the following values: c.

45, 47, 50, 52, 48, 47, 49, 53, 51.

Does the mean of these values differ significantly from the assumed mean 47.5?

- Show that the Newton-Raphson Method has second order convergence. d.
- Use fourth order Runge -Kutta method to find y (0.2), Given
- $\frac{dy}{dx} = \mathbb{H} \quad y^2; y(0) = 0 .$

SECTION C

3. Attempt any one part of the following:

 $10 \times 1 = 10$

- (a) Using calculus of residue, evaluate the following integral $\int_{0}^{\infty} \frac{dx}{(a^2 + x^2)^2}$.
- (b) Determine the analytic function f(z) = u+iv, in terms of z, whose $u v = e^x(\cos y \sin y)$.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

If the θ is the acute angle between the two regression lines in the case of two

(a) variables x and y, show that $\tan \theta = \frac{1-r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$ where r, $\sigma_x \sigma_y$ have their

usual meanings. Explain the significance of the formula when r = 0 and r = -1.

(b) Determine the constants a and b by the method of least square such that $y = ae^{bx}$ fits the following data:

Х	2	4	6	8	10
У	4.077	11.084	30.128	81.897	222.62

5. Attempt any one part of the following:

 $10 \times 1 = 10$

(a) The following table gives the number of accidents that took place in an industry during various days of the week. Test if accidents are uniformly distributed over the week:

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Number	14	18	12	11	15	14
of	1/1/2					
Accidents	167	X				

(b) Prove that Pission distribution is the limiting case of Binomial distribution.

6. Attempt any one part of the following:

 $10 \times 1 = 10$

- (a) Find a real root of the equation $x \log_{10} x = 1.2$ using bisection method correct up to three decimals places.
- (b) Population of a town as given:

Years(x)	1891	1901	1911	1921	1931
Population(y)	49	60	88	99	120

Estimate the population for the year 1894.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Solve the system of equations using crout's method. 2x+3y+z=9, x+2y+3z=6, 3x+y+2z=8.
- (b) Compute $\int_{0}^{6} \frac{dx}{1+x^2}$ using Simpson's 3/8 rule.