

				Sub	ject	Co	de: I	KAS	5201
Roll No:									

Printed Page: 1 of 1

BTECH (SEM II) THEORY EXAMINATION 2021-22 PHYSICS

Time: 3 Hours Total Marks: 100

Notes:

• Attempt all Sections and Assume any missing data.

• Appropriate marks are allotted to each question, answer accordingly.

SECTI	ON-A Attempt All of the following Questions in brief	Marks(10X2=20)	CO			
Q1(a)	21(a) State Einstein's postulates of special theory of relativity.					
Q1(b)	Show that the rest mass of a photon is zero.					
Q1(c)	State equation of continuity.					
Q1(d)	Define skin depth.					
Q1(e)	What is black body radiation?					
Q1(f)	What is wave-particle duality?					
Q1(g)	What are coherent sources?					
Q1(h)	Differentiate Fresnel's and Fraunhofer's diffraction.					
Q1(i)	What do you mean by attenuation and dispersion in optical fiber?		5			
Q1(j)	What are the main components of laser?		5			

SECT	ION-B Attempt ANY Three of the following Questions Marks(3X10=30)	CO
Q2(a)	What is length contraction? Derive the necessary expression for it. Show that $x^2+y^2+z^2-c^2t^2$ is	1
	invariant under Lorentz transformation.	
Q2(b)	What is displacement current? For a medium, conductivity $\sigma = 58 \times 10^6$ seimen/m, $\epsilon_r = 1$. Find out	2
	the conduction and displacement current densities if the magnitude of electric field intensity is given	
	by $E = 150 \sin(10^{10} t) \text{ Volt/m}.$	
Q2(c)	What is de-Broglie hypothesis? Find the least energy of an electron moving in one dimension in an	3
	infinitely high potential box of width 1×10^{-10} m. (Mass of electron is 9.1×10^{-31} kg and $h = 6.63\times10^{-10}$	
	34 J-s)	
Q2(d)	Explain interference in thin films and prove that reflection and transmission are complementary with	4
	each other.	
Q2(e)	Derive the expressions for acceptance angle and numerical aperture of an optical fiber.	5

	ION-C	Attempt ANY ONE			Marks (1X10=10)	CO
Q3(a)	By using Lo	orentz transformation	quations, derive tin	ne dilation. Show that	t time dilation is a real	1
	effect.	100	X			
Q3(b)	Discuss and	derive the relativistic	velocity addition th	eorem. Show that it is	is consistent with Einstein's	1
	second post	ulate. Show that E^2 -	$-P^2C^2 = m_0^2c^4,$	Where P is the mome	entum.	

SECTI	ON-C Attempt ANY ONE following Question	Marks (1X10=10)	CO			
Q4(a)						
	speed of light in free space.					
Q4(b)	Derive the Poynting or work-energy theorem for the flow of energy in an	electromagnetic field. Also	2			
	give the physical interpretation					

SECTI	ON-C Attempt ANY ONE following Question Marks (1X10=10)	CO
Q5(a)	Give the physical significance of wave function. Derive Schrodinger's time independent wave	3
	equation.	
Q5(b)	Define Compton effect and derive an expression for the Compton shift ($\Delta\lambda$).	3

SECTION-C		Attempt ANY ONE following Question					ks (1X10=10)	CO
Q6(a)	Explain and describe the formation of Newton's rings in reflected light. Prove that in reflected				reflected the	4		
	diameters of dark rings are proportional to the square roots of natural numbers.							
Q6(b)	Discuss sin	le slit Fraunhofer's diffract	on and show	that the	relative	intensities	of successive	4
	maximum a	nearly 1: 1/22: 1/62: 1/121						

5	SECTI	ON-C	Attempt ANY ONE following Question	Marks (1X10=10)	CO	
(Q7(a) With the help of diagram classify and describe various types of optical fibers based on modes and				5	
		core refractive index.				
	Q7(b)	Draw a neat diagram of He-Ne laser and explain the construction and working of it.		5		