\square
B. Tech.
(SEM I) THEORY EXAMINATION 2018-19
PHYSICS
Time: 3 Hours
Total Marks: 100
Note1. AttemaltSectiohfs equiacymissidgtatheohooseditably.

SECTIOAN

1. Attemøltquestiontsrief.
$2 \times 10=20$
a. Write down the postulates of special theory of relativity.
[CO 1]
b. How will you show that no particle can move with a velocity greater than the velocity of light in an inertial frame?
[CO 1]
c. Why Maxwell proposed that Ampere's law require modification?
[CO 2]
d. What do you mean by depth of penetration?
[CO 2]
e. Determine the de-Broglie wavelength of a photon.
[CO 3]
f. Discuss the physical significance of a wave function.
[CO 3]
g. Why two independent sources cannot be coherent?
[CO 4]
h. What do you mean by resolving power of an optical instrument?
i. Distinguish between spontaneous and stimulated emissions. Which one is required for laser?
[CO 5]
j. What is the principle of operation of an optical fiber?
[CO 5]

SECTION B

2. Attempt any three partsor the following:
$10 \times 3=30$
a. Deduce the relativisti. velocity addition theorem. Show that it is consistent with Einstein's second oustulate.
[CO 1]
b. Write the Max \times dl's equations in integral as well as in differential form and explain their physical significance. Show that the velocity of plane electromagnetic wave in the free space is given by $c=1 / \sqrt{ }\left(\mu_{0} \varepsilon_{0}\right)$.
[CO 2]
c. Obtain time independent and time dependent Schrodinger's wave equations. [CO 3]
d. Discuss the phenomenon of Fraunhfofer diffraction at a single slit and show that the relative intensities of the successive maximum are nearly
[CO 4]
$1: \frac{4}{9 \Pi^{2}}: \frac{4}{25 \Pi^{2}}: \frac{4}{49 \Pi^{2}}$
e. Discuss the structure of an optical fiber. What are various types of optical fibers?

Explain their advantages and disadvantages.
[CO 5]

SECTION C

3. Attempt any two parts of the following:
(a) What do you mean by length contraction? Deduce the necessary expression for this.
(b) Obtain the volume of a cube, the proper length of each edge of which is l_{0} when it is moving with velocity v along one edge of
(c) Deduce an expression for the variation of mass with velocity.
4. Attempt any two parts of the following:
$5 \times 2=10$
(a) What is Poynting vector? Derive and explain Poynting theorem.
(b) Deduce Coulomb's law of electro-statistics from Maxwell's first equation.
(c) Calculate the magnitude of Poynting vector at the surface of the sun. Given that power radiated by sun is 5.4×10^{88} watt and radius of sun is $7 \times 10^{8} \mathrm{~m}$.
5. Attempt any two parts of the following:
(a) A particle is in motion along a line $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$ with zero potential energy. At points for which $\mathrm{x}<0$ and $\mathrm{x}>\mathrm{L}$, the potential energy is infinite. Solving Schrodinger equation, obtain energy eigen values \& normalized wave function for the particle.
(b) What is Compton effect? Derive the necessary expression for Compton shift.
(c) Show that $\psi(x, y z t)=,\psi(x, y z e)^{-i w t}$ is a wave function of a stationary state.
6. Attempt any two parts of the following:
(a) Explain the formation of Newton's ring. Prove that in reflected light the diameter of dark rings are proportional to the square [CO 4] root of natural numbers.
(b) Light of wavelength $6000 \AA$ falls normally on a thin wedge-shaped film of refractive index 1.4 forming fringes that are 2.0 mm apart. Find [CO 4] the angle of wedge in econds.
(c) In a grating spefrum, which spectral line in $4^{\text {th }}$ order will overlap with 3rforder line of $5461 \AA$
7. Attempt any tarts of the following:
(a) Describe the construction and working of Ruby Laser with neat diagram.
(b) Calculate the population ratio of two states in $\mathrm{He}-\mathrm{Ne}$ laser that produces light of wavelength $6000 \AA$ at $27^{\circ} \mathrm{C}$.
(c) Calculate the numerical aperture, acceptance angle, and the critical angle of the optical fiber if the refractive index of the [CO 5] core is 1.50 and refractive index of cladding is 1.45.
