Download all Notes and papers from StudentSurwidelieazobijiqqts.com

\qquad

B. Tech. (Sem. - 3 ${ }^{\text {rd }}$)
 DISCRETE STRUCTURES
 SUBJECT CODE : CS - 203
 Paper ID : [A0452]

[Note : Please fill subject code and paper ID on OMR]

Time : 03 Hours
Maximum Marks : 60

Instruction to Candidates:

1) Section - A is Compulsory.
2) Attempt any Four questions from Section - B.
3) Attempt any Two questions from Section - C.

Section - A

Q1)
$(10 \times 2=20)$
a) Show that the sum of degree of all the vertices in a graph is even.
b) What is the difference between directed and undirected graph?
c) Give an example of a graph which is Hamiltonian but not Eulerian and vice versa.
d) Prove that $\binom{n+1}{r}=\binom{n}{r-1}+\binom{n}{r}$.
e) How many positive integers not exceeding 500 are divisible by 7 or 11 ?
f) Consider the following relation on the set $A=\{1,2,3,4\}: R=\{(1,1)$, $(2,2),(2,3),(3,2),(4,2),(4,4)\}$. Draw its diagraph. Is $R(i)$ reflexive (ii) antisymmetric and (iii) transitive?
g) Show that a semi group with two idempotent elements can not be a group.
h) Let G be a finite group with identity element e. Show that $a^{n}=\mathrm{e}$ for any $a \in G$.
i) Consider the rings ($Z,+$, .) and ($2 Z,+,$.) and define $f: Z \rightarrow 2 Z$ by $f(n)=2 n$ for all $n \in Z$. Is f a ring isomorphism? Justify your answer.
j) Prove that the complement of every element of a Boolean algebra B is unique.

Section - B

$$
(4 \times 5=20)
$$

Q2) (a) Show that the chromatic number of a graph C_{n}, where C_{n} is the cyclic with n vertices is either 2 or 3 .
(b) Define rooted tree with example and show how it may be viewed as directed graph.

Q3) (a) Let P, Q and R be three finite sets. Prove that

$$
|P \cup Q \cup R|=|P|+|Q|+|R|-|P \cap Q|-|P \cap R|-|Q \cap R|+|P \cap Q \cap R|
$$

(b) Solve the following recurrence relation using generating function:

$$
S(k)-6 S(k-1)+5 S(k-2)=0, k \geq 2, \text { where } S(0)=1, S(1)=2
$$

Q4) What are the properties of relations? Explain with examples. Find the number of relation from the set $A=\{a, b, c\}$ to $B=\{1,2\}$.

Q5) (a) Let (G, o) be a group. Show that (G, o) is an abelian group if and only if $(a \circ b)^{2}=a^{2} \circ b^{2}$.
(b) Let G be group of two by two invertible matrices $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] ; a d-b c \neq 0$. Let $H=\left\{\left[\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right]: a \neq 0\right\}$. Show that H is a normal subgroup of G.

Q6) (a) Let M be a ring of 2×2 matrices over integers. Consider the set $L=\left\{\left[\begin{array}{ll}a & 0 \\ b & 0\end{array}\right]: a, b \in Z\right\}$. Show that L is a left ideal of M. Is L is right ideal of M ?
(b) Show that the set of real numbers of the form $\{a+b \sqrt{2}: a, b \in Z\}$ is an integral domain. Is it a field?

Section - C

$$
(2 \times 10=20)
$$

Q7) Let R be an equivalence relation on a set A. For $a, b \in A$ prove that
(a) $a \in[a]$
(b) $b \in[a]$ if and only if [a]=[b].
(c) two equivalence classes are either identical or disjoint.

Download all Notes and papers from StudentSurwidelpersobijiqts.com

Q8) Consider the set Z together with binary operations \oplus and \otimes defined by $a \oplus b=a+b-1, a \otimes b=a+b-a b$. Show that $(\mathrm{Z}, \oplus, \otimes)$ is a ring.

Q9) Express the switching circuit shown in the figure through the logic or gate circuit.
(a) Write Boolean function.
(b) Simplify the function f algebraically.
(c) Find the minterm normal form by using Venn diagram and express it in gate diagram.

(2) *

Download all Notes and papers from StudentSuvidha.com

