Roll No.
Total No. of Pages : 02
Total No. of Questions: 09

> B.Tech. (CSE-2011 Batch)/(IT-2011 Batch) (Sem.-3rd) DISCRETE STRUCTURES
> Subject Code : BTCS-302
> Paper ID : [A1124]

Time: 3 Hrs.
Max. Marks : 60

## INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

## SECTION-A

1. Answer briefly :
(a) Define an equivalence relation on a set A. Explain with the help of an example.
(b) Define a partial order on the set N of all natural numbers.
(c) Give an example each of a commutative ring with identity and a field.
(d) Make a table of all Boolean functions of degree 2.
(e) Compute the number of distinct five-card hands that can be dealt from a deck of 52 cards.
(f) Give an example of a linear homogeneous recurrence relation of degree 2.
(g) Is the set Z of integers with the binary operation of subtraction a semi-group ? Justify your answer.
(h) Prove that there exists a semi-group which is not a monoid.
(i) Define a simple path in a graph.
(j) Give en example of a connected graph.

## SECTION-B

2. Let $\mathrm{A}=\{a, b, c, d\}$ and $\mathrm{B}=\{1,2,3\}$. Determine whether the relation R from A to B given by $\mathrm{R}=\{(a, 1),(b, 2),(c, 1),(d, 2)\}$ is a function or not. Justify your answer.
3. Show that $x \bar{y}+y \bar{z}+\bar{x} z=\bar{x} y+\bar{y} z+x \bar{z}$ where $x, y, z$ are Boolean variables.
4. Show that among 100 people there are at least 9 who were born in the same month.
5. Give an example of a non-abelian group of order 8.
6. Prove that $\mathrm{K}_{5-}$ the complete graph on 5 vertices is not planar.

## SECTION-C

7. (a) What is the chromatic number of $\mathrm{C}_{n}$ - the cycle with $n$ vertices?
(b) Prove that an undirected graph has an even number of vertices with odd degree.
8. Solve the recurrence relation :
$a_{n}=6 a_{n-1}-11 a_{n-2}+6 a_{n-3}$ with the initial conditions
$a_{0}=2, a_{1}=5, a_{2}=15$.
9. (a) What is a hashing function? Give one example of an application of hashing functions.
(b) Construct a circuit using inverters, AND gates and OR gates to produce the output $x y z+\bar{x} \bar{y} \bar{z}$.
