Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Tech. (CSE/IT) (Sem.-3rd)

DISCRETE STRUCTURES

Subject Code: BTCS-302 (2011 Batch)

Paper ID: [A1124]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

SECTION-A

- l. Write short notes on :
 - (a) Define an equivalence relation on a set.
 - (b) Give an example of a partial order relation on the set $\angle 1$ of integers.
 - (c) Prove that the intersection of any two left ideals of a ring is also a left ideal of the ring.
 - (d) Give an example of a Boolean Algebra.
 - (e) Find the number of different messages that can be represented by sequences by 4 dots and 6 dashes.
 - (f) What is the minimum number of people with the same last initials in a group of 85 people.
 - (g) Define a semigroup and a monoid.
 - (h) Let $\angle 1$ be the additive group of integers. Prove that map $f: \angle 1$ $\rightarrow \angle 1$ defined by f(x) = 2x, $x \in \angle 1$ is a group isomorphism.
 - (i) Define a simple graph and a complete graph.
- Download all Notes and papers from StudentSuvidha.com

SECTION-B

- 2. Let $H: K \to L$ be a hash function where L consists of two digit addresses 00, 01, 02, ..., 49. Find H (12304) using :
 - (i) Division method and
 - (ii) Folding method.
- 3. Let G be a finite group and H be a subgroup of G. Prove that order of H divides the order of G.
- 4. List any five properties of a graph which are invariant under graph isomorphism.
- 5. Let $T: R \to S$ be a ring homomorphism. Define Ker (T), the kernel of T. Prove that Ker(T) is a two sided ideal of R.
- 6. Find the minimum number of persons selected so that at least eight of them will have birthdays on the same day of the week.

SECTION-C

7. Design a three-input-minimal AND-OR circuit with the following truth table:

$$T = \{A, B, C; L\} = \{00001111, 00110011, 01010101, 11001101\}.$$

8. Solve the recurrence relation:

$$a_n - 4a_{n-1} = 6.4^n, a_0 = 1.$$

9. Prove that it is not possible be supply three utilities to three places by conduits without crossing over.