Download all Notes and papers from StudentSwwindharsobjects.com

Roll No:

http://www.a2zsubjects.com

Total No. of Questions: 09]

[Total No. of Pages:03

Paper ID [CS205]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 3rd)

DIGITAL CIRCUITS & LOGIC DESIGN (CS - 205)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any **Two** questions from Section C.

Section - A

- Q1) a) Choose the correct or best alternative in the following: $(6 \times 2 = 12)$
 - (i) 8 is equal to signed binary number
 - (A) 10001000.
- (B) 00001000.
- (C) 10000000.
- (D) 11000000.
- (ii) De-Morgan's first theorem shows the equivalence of
 - (A) OR gate and Exclusive OR gate.
 - (B) NOR gate and Bubbled AND gate.
 - (C) NOR gate and NAND gate.
 - (D) NAND gate and NOT gate.
- (iii) The digital logic family which has the lowest propagation delay time is
 - (A) ECL.
- (B) TTL.
- (C) CMOS.
- (D) PMOS.
- (iv) The device which changes from serial data to parallel data is
 - (A) COUNTER.
- (B) MULTIPLEXER.
- (C) DEMULTIPLEXER.
- (D) FLIP-FLOP.
- (v) A device which converts BCD to Seven Segment is called
 - (A) Encoder.
- (B) Decoder.
- (C) Multiplexer.
- (D) Demultiplexer.

R-432 [2058]

P.T.O.

Download all Notes and papers from StudentSwwindhassoniers com

http://www.a2zsubjects.com

(vi) In successive-approximation A/D converter, offset voltage equal to

 $\frac{1}{2}$ LSB is added to the D/A converter?s output This is done to

- (A) Improve the speed of operation.
- (B) Reduce the maximum quantization error.
- (C) Increase the number of bits at the output.
- (D) Increase the range of input voltage that can be converted.
- b) (i) Convert 2222 in Hexadecimal number.

[2]

(ii) Subtract -27 from 68 using 2's complements.

[3]

(iii) Divide $(101110)_2$ by $(101)_2$.

[3]

Section - B

 $(4 \times 5 = 20)$

- Q2) State and prove De-Morgan's theorems.
- Q3) Prove the following identities using Boolean algebra:

(a)
$$(A + B)(A + \overline{AB})C + \overline{A}(B + \overline{C}) + \overline{A}B + ABC = C(A + B) + \overline{A}(B + \overline{C}).$$

(b)
$$\overline{A(\overline{A \cdot B}) \cdot \overline{B(\overline{A \cdot B})}} = A \oplus B.$$

(c)
$$\overline{AB} + \overline{A} + \overline{AB} = 0$$
.

Q4) A combinational circuit has 3 inputs A, B, C and output F. F is true for following input combinations

A is False, B is True

A is False, C is True

A, B, C are False

A, B, C are True

- (a) Write the Truth table for F. Use the convention True = 1 and False = 0.
- (b) Write the simplified expression for F in SOP form.
- (c) Write the simplified expression for F in POS form.
- (d) Draw logic circuit using minimum number of 2 input NAND gates.
- Q5) Minimise the logic function

 $F(A,B,C,D) = \Pi M(1,2,3,8,9,10,11,14) \cdot d(7,15)$

Use Karnaugh map. Draw the logic circuit for the simplified function using NOR gates only.

Q6) What is the necessity of Interfacing in digital ICs and what are the points to be kept in view, while interfacing between TTL gate and CMOS gate?

R-432

2

Download all Notes and papers from StudentSuvidha.com

