Roll No.

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Total No. of Pages : 2
Total No. of Questions : 09

## B.Tech.(CSE/IT) (Sem.-3)

## DIGITAL CIRCUITS AND LOGIC DESIGN <br> Subject Code : BTCS-303 (2011 Batch) <br> Paper ID : [A1125]

Time : 3 Hrs.
Max. Marks : 60

## INSTRUCTION TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students has to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students has to attempt any TWO questions.

## SECTION-A

1. Write briefly :
(a) Represent the function $(x, y, z)=y$ using K-Map.
(b) What is the advantage of R-2R ladder?
(c) Explain clearly how a Flip-Flop is used as a memory unit
(d) Rewrite the following expression in a form that requires as few inversions as possible

$$
b^{\prime} c+a c d^{\prime}+a^{\prime} c+c(a+c)\left(a^{\prime}+d^{\prime}\right)
$$

(e) Given that $(79)_{10}=(142)_{\mathrm{b}}$ determine the value of b .
(f) What is edge-triggering?
(g) What is the major advantage of D-flip flop over S-R?
(h) What is the purpose of a shift register?
(i) What are De-Morgan's laws?
(j) What is DAC?

## Download all Notes and papers from StudentSuvidha.com

## SECTION-B

2. What is the difference between 1 's and 2's complement? Which is better of the two for the representation of the negative numbers and why?
3. Using 2's complement notation perform the following arithmetic operations using 8 bit register(s):
(i) $25+(-12)$
(ii) $17-6$
(iii) $-18-16$
(iv) $-8+(18)$
(v) $12-(-19)$
4. What is Ring Counter? Explain the working of a 4-bit ring counter.
5. Mention all the Boolean laws and explain any two of them.
6. Explain the structure of a typical RAM cell.

## SECTION-C

7. (a) Explain the following terms used in a DAC:
(i) Resolution
(ii) Accuracy
(iii) Settling time
(iv) Môn tonicity
(b) How are R-2R ladder used in DACs?
8. Given the function $T(w, x, y, z)=\Sigma(1,3,4,5,7,8,9,11,14,15)$
a) Use the K - map to determine the set of all prime implicants. Indicate specifically the essential ones. Find three distinct minimal expressions for T .
b) Assume that only unprimed variables are available. Construct a circuit which realizes T
9. Design a decade counter using J-K flip-flops.
