Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

B.Tech.(Sem. $-3^{rd}/4^{th}$) **MATHEMATICS III** SUBJECT CODE: CS - 204 Paper ID : [A0495]

Time: 03 Hours **Maximum Marks: 60**

Instructions to Candidates:

- Section A is Compulsory. 1)
- Attempt any **Four** guestions from Section **B**. 2)
- Attempt any **Two** questions from Section **C**. 3)

Section - A

Q1) $(10 \times 2 = 20)$

- State Lagrange's mean value theorem and verify the same for $f(x) = x^2$, [1,5] a)
- Evaluate $\int_0^2 \int_0^{\sqrt{2X}} xy \, dy \, dx$ b)
- Determine whether $f(z)=(x-y)^2+2i(x+y)$ analytic anywhere? c)
- Find $\oint_C \frac{5z^2 4z + 3}{z 2} dz$ where c is ellipse $16x^2 + 9y^2 = 144$ d)
- Determine the residue at the poles for $\frac{\sin z}{z^2}$ e)
- Write down one dimensional heat equation? Classify the differential equation in f) terms of i) Elliptic ii) Parabolic or iii) Hyperbolic
- g) Write down the algebraic equation by taking Laplace transform of the differential

equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = x$$
 $y(0) = 1$, $y'(0) = 0$

- By Euler's method find y(0.2), $\checkmark= x + y h = 0-1$, y(0) = 1, where H is step length. h)
- Explain Taylor's series method for solving the differential Eq $\frac{dy}{dx} = f(x,y)$, i)

 $y(n_0) = y_0$. Compute y(0.2) if f(x, y) = x + y, $x_0 = 0$, $y_0 = 1$. Find fourier transform of $f(x) = \begin{cases} 1 & |x| < 9 \\ 0 & |x| > 9 \end{cases}$

Section - B $(4 \times 5 = 20)$

- (Q2) Find the volume of tetrahedron bounded by coordinate planes and the plane x+2y+3z=4.
- Q3) Show that for $f(z) = \begin{cases} \frac{2xy(x+iy)}{x^2 + y^2} & z \neq 0 \\ 0 & z = 0 \end{cases}$

J - 788 1 P.T.O.

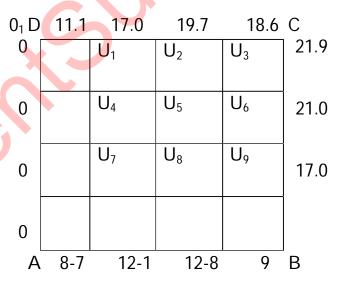
a2zSubjects.coom

Cauchy Riemann equations are satisfied at origin but derivative of f(z) does not exist at origin.

- **Q4**) Prove that circles are mapped on to circles under the mapping $w = \frac{1}{2}$.
- Q5) Use Runge-kutta method of order four to find Y at x=0.1 given that x(dy + dx) = y(dx - dy), y(0) = 1
- Q6) Find the general solution of Laplace equation $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0, v(x, \infty) = 0.$ Section C $(2 \times 10 = 20)$ Q7) a) Expand f(z) in lauss erits series, where $f(z) = \frac{1}{z^2 4z + 3}$, for 1 < |z| < 3.

Section – C
$$(2 \times 10 = 20)$$

- - Evaluate $\oint_C \frac{1}{(z^2+4)^2} dz$, where is |z-i|=2b)
- **Q8)** A tightly stretched string has its ends fixed at x=0 and x=1. At time t=0, the string is given a shape defined by $f(x) = \mu x(1-x)$, where μ is a constant and then released. Find the displacement of any point x of the string at any time t>0.
- **Q9**) Find the value of u(x, y) satisfying the Laplace equation $\nabla^2 u=0$ at the pivotal points of a square region with boundary values as shown in figure.



Solve the problem up to 1st iteration after obtaining initial values.

