Roll No.

Total No. of Pages: 02

Total No. of Questions: 07

BCA (Sem.-1st)
MATHEMATICS (BRIDGE COURSE)
Subject Code :BC-102
Paper ID : [B0202]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTION TO CANDIDATES:

- 1. SECTION-A is COMPULSORY.
- 2. Attempt any FOUR questions from SECTION-B.

SECTION-A $(10 \times 2 = 20 \text{ Marks})$

- 1. Write short notes on:
 - (a) Define mean and median
 - (b) Explain relation & function
 - (c) Explain Idempotent laws
 - (d) What do you mean by Disjoint sets?
 - (e) Explain properties of Determinants.
 - (f) What do you mean by Union & intersection of sets?
 - (g) Explain De-Morgan's law.
 - (h) What do you mean by cofactors of the determinant?
 - (i) Define Greatest integer function.
 - (j) Find the value of x & y when

$$\begin{vmatrix} 5 & 5 & 5 \\ y & x \end{vmatrix} = 1 & \begin{vmatrix} 58 & 7 \\ y & x \end{vmatrix} = 3$$

SECTION-B $(4 \times 10 = 40 \text{ Marks})$

- 2. (a) Find the transpose and adjoint of the matrix A, where $A = \begin{bmatrix} 5 & 2 & 8 \\ 0 & 5 & 0 \\ 7 & 4 & 5 \end{bmatrix}$
 - (b) Find the coefficients of x in the expansion of $(1 2x^3 + 3x^2) (1+1/x)^8$

Download all Notes and Subjects of Prom Student Suvidha.com

- 3. Find $(x + 1)^6 + (x 1)^6$. Hence; evaluate $(\sqrt{3} + 1)^6 + (\sqrt{3} 1)^6$ (5,5)
- 4. (a) Prove by the principle of Mathematical induction that for all $n \in \mathbb{N}$ $1+4+7+\dots(3n-2) = \frac{1}{2}[n (3n-1)]$
 - (b) Prove that by the principle of Mathematical induction that for all $n \in \mathbb{N}$, 3^{2n} when divided by 8, the remainder is always 1. (5,5)
- 5. Find the mean, median and mode of the following data relating to weight of 120 articles.

Weight in gm	0-10	10-20	20-30	30-40	40-50	50-60
No. of articles	14	17	22	26	23	18
		100			(10)	

- 6. What do you mean by function, kind of functions and relation. For the relation R_1 defined on R by the rule $(a, b) \varepsilon R_1 \iff 1 + ab > 0$. Prove that $(a, b) \varepsilon R_1 \& (b, c) \varepsilon R_1 \Rightarrow (a, c) \varepsilon R_1$ is not true for all $a, b, c \varepsilon R$.
- 7. (a) Prove that $\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$
 - (b) The coefficients of three consecutive terms in the expansion of $(1+x)^n$, are in the ratio 1:7:42, find n. (5,5)