			ages: 3			871	1
		m yol raceri rof 50	MILE DAID THING TO	-7 / M-14 /E ENGIN		n A (0) bits 1 and pull-cheffic	2 and -
_		meter	Paper-E	CE-407-E	(Opt. I)	per la fed at	
	Time	e allo	wed: 3 hours]		[Maximu	m marks	: 100
	Not	e:	Attempt any five q question from each	uestions b section.	y selectin	ng at least	one
			S in cylindrical Man	ection-I	ain remoc	mxil (d)	
	1.	(a)	Derive expressio resonator cavity.	ns for unlo	aded Q-fa	ctor of Co	axial
		(b)	A cylindrical air fi 10 cm is excited i 2.5MHz. Calculate factor?	n TE ₁₁₁ mod	de. The 3d	B bandwid	dth is
	2.	(a)	Explain down of Measurement?	conversion	method	of freque	ency
		(b)	Compare waveguid the measurements give advantages an	of dielectr	ic constan	t of a solid	ls for l and
		(c)	Calculate the VSV power points is 1n mode and given that are 4×2.5cm and fi	WR when the dime	he distance the wave ensions of	e between is in domi	half nant
			Sec.	ction-II	de diagran	latine	
	3. ml	(a)	Howoptimum distant component of current klystron amplifier diagrams?	nt occurs is r, give nec	computed essary ex	for a two ca	vitv
	871	1				P.7	87.0.1

(2)A traveling wave tube operates under the beam voltage of 3kV, beam current of 30mA and characeristic impedance of helix is 10Ω with circuit length of 50 at a frequency of 10GHz. Calculate (a) Gain parameter (b) Output power gain (c) All four propagation constant? 3+3+4=10 Derive expressions for power output and efficiency for Reflex klystron oscillator. Explain π -mode oscillations in cylindrical Magnetron. (a) Derive expressions for under led O-factor of

A X-band cylindrical magnetron operates under following parametric conditions:

Anode Voltage $(V_0) = 26KV$, Beam current $(I_0) = 27A$, magnetic flux density $(B_0) = 0.336$ wb/m². Radius of cathode cylinder (a) = 5cm and radius of vane edge to centre (b) = 10cm then

Calculate:

- Cyclotron Angular Frequency?
- Cut-off Voltage for fixed Bo?
- Cut-off Magnetic Flux density for fixed V

Section-III

- Explain the operation of a Faraday rotation isolator using suitable diagrams of each of its sections? 10
 - A matched isolator has a insertion loss of 0.5dB and the isolation 25dB. Find scattering coefficients? 5
 - A three port circulator has an insertion loss of 0.5dB isolation 23dB and VSWR = 1.7. Find S-matrix. 5

8711

1	19	
1	-4	
١.	_	

- (a) A Magic-T is terminated at collinear ports 1 and 2 and difference port 4 by impedances of reflection coefficients 0.5, 0.6 and 0.8 respectively. If 1W power is fed at sum port 3, calculate the power reflected at port 3 and power transmitted to other three ports?
- (b) Determine S-matrix of an ideal lossless match terminated Directional coupler with a coupling of 10dB and directivity of 30dB.

Section-IV

- (a) Explain High Field domain formation in Gunn Diode with necessary diagrams?
- (b) Determine the criterion for classifying the modes of operation of Gunn diode, given that electron drift velocity is 2.5×10^5 m/s, negative electron mobility $\mu_n = 0.015 \times 10^5$ m²/Vs and $\epsilon_r = 13.1$.
- (c) Explain Limited Space Charge Accumulation mode of Gunn diode operation? 5
- (a) A Ku band IMPATT diode has a pulse operating voltage of 100 V and pulse operating current of 0.9A. If the efficiency is about 10% and pulse width is 0.01ns at frequency of 16GHz then calculate the output power and duty cycle.
- (b) Explain principle of operation of BARITT diode with suitable diagram?
- (c) Explain the operation of Parametric Amplifier and discuss Manley-Rowe Power relations. 10

