BT-6/JX

8727

Digital Signal Processing

Paper: ECE-306 E

Time: Three Hours]

[Maximum Marks: 100

Note: Attempt FIVE questions in all, selecting at least ONE question from each Unit.

UNIT-I

1. (a) Determine if the system having the following system function is stable:

$$H(z) = \frac{1}{1 - \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}}$$

(b) Determine the causal signal x(n) having the z-transform

$$X(z) = \frac{1}{(1 - 2z^{-1})(1 - z^{-1})^2}$$

2. (a) Compute the N-point DFT of the signal $x(n) = \sin\left(\frac{2\pi}{N}k_0n\right)$; $0 \le n \le N-1$, and show the magnitude and phase spectra.

10

(b) Describe the 8-point, radix-2 decimation in time algorithm of FFT computation and obtain its signal flow graph.

UNIT-II

3. (a) Obtain the direct form I and direct form II structures for the following system:

$$y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.252x(n-2)$$

10

8727

Contd.

- (b) Describe the effect of finite word length on the performance of FIR filter structures.
- 4. (a) Obtain the cascade and parallel structures for the following system:

$$y(n) = y(n-1) - \frac{1}{2}y(n-2) + x(n) - x(n-1) + x(n-2)$$

(b) A bandpass filter is to be used for digital clock recovery at 4.8 k band and a sampling frequency of 153.6 kHz. The filter is characterized by the following transfer function:

$$H(z) = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}}$$

where $a_1 = -1.957558$ and $a_2 = 0.995913$. Assess the effect of quantizing the coefficients to 8 bits on the pole positions and hence on the centre frequency.

UNIT-III

- 5. (a) Describe various parameters used to characterize the window functions for the design of FIR filters.
 - (b) Obtain the coefficients of an FIR low-pass filter to meet the specifications given below, using the Hamming window:

Pass-band edge frequency = 1.5 KHz

Transition width = 0.5 KHz

Stop-band attenuation > 50 dB

Sampling frequency = 8 KHz.

10

6. (a) Describe the procedure for design of optimum equiripple linear phase FIR filters.

8727

2

Contd.

(b) Determine the coefficients of a linear-phase FIR filter of length M=15 which has a symmetric unit sample response and a frequency response that satisfies the conditions

$$H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, & k = 0,1,2,3\\ 0.4; & k = 4\\ 0; & k = 5,6,7 \end{cases}$$

UNIT-IV

- 7. (a) Enumerate and explain the factors influencing the choice between FIR and IIR filters for a given application.
 - (b) Determine the system function H(z) of the lowest-order Chebyshev digital filter that meets the following specifications:
 - (i) 1-dB ripple in the pass band $0 \le |w| \le 0.24\pi$
 - (ii) At least 60 dB attenuation in the stopband $0.35\pi \le |w| \le \pi$.

 Use the bilinear transformation.
- 8. (a) Convert the analog filter with following system function into a digital IIR filter by means of the impulse invariance method:

$$H(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$$

(b) Describe the Pade approximation least squares method of designing a digital filter.

8727

3

3300