CS_2007_1

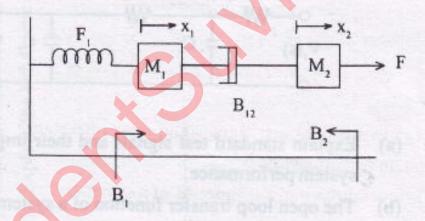
Roll No.

Total No. of Pages: 3

BT-6/J07

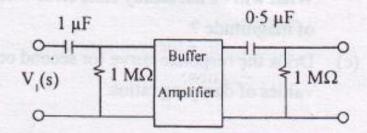
9108

Control System Engg. (2005-06)


Paper: ECE-302 E

Time: Three Hours]

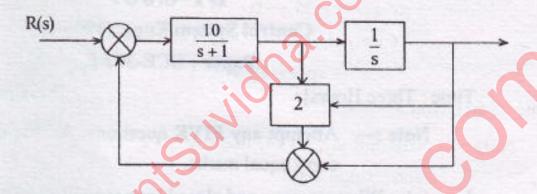
[Maximum Marks: 100


Note: — Attempt any FIVE questions. All the questions carry equal marks.

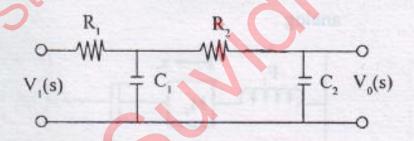
- (a) What are open and closed loop systems? Distinguish between them.
 - (b) Find the system equations for fig. shown below and obtain f-v analog:
 8

(c) Find $\frac{V_0(s)}{V_1(s)}$ for figure shown below:

7



 (a) Draw the generalised feedback control system. Explain various terms.


Download all Notes and papers from StudentSuvidha.com
9108(OL)(4-D) (Contd.)

CS_2007_2

(b) The block diagram of a system is shown below. Determine the transfer function.
7

(c) Draw the Corresponding signal flow graph and obtain T.F. using Mason gain formula.
7

- (a) Explain standard test signals and their importance in control system performance.
 - (b) The open loop transfer function of a system is

GH(s) =
$$\frac{10}{s(s+2)(s+5)}$$
.

What will be the steady state error when the input signal is step of magnitude?

- (c) Draw the response curve for second order system with various values of damping ratios.
- 4. (a) For a second order system with unity feedback $G(s) = \frac{200}{s(s+8)}$

find the freq. domain specification.

10

Download all Notes and papers from StudentSuvidha.com 9108(OL)(4-D) 2 (Contd.)

CS_2007_3

(b) A unity feedback control system is

$$G(s) = \frac{K}{s(s^2 + 4s + 5)(s + 2)}$$

Determine the range of K so that system is stable.

1(

5. (a) Express in parallel form

$$G(s) = \frac{5(s+1)}{s(s+2)(s+10)}$$

(b) Find the dynamic equation of system in matrix form

$$\frac{2d^3y}{dt^3} + \frac{3d^2y}{dt^2} + \frac{5dy}{dt} + 2y = x(t).$$
 10

- Write short notes on :
 - (a) Phase lead compensation
 - (b) Feedback compensation.

20

7. (a) Plot the Nyquist stability plot

G(s) H(s) =
$$\frac{20}{s(1+0.1s)(1+0.5s)}$$
.

- (b) Discuss the importance of gain margin and phase margin.
- 8. (a) Draw the polar plot and hence determine if the system is stable and its gain and phase margin

GH(s) =
$$\frac{12}{s(s+1)(s+2)}$$
.

(b) Discuss correlation between time and freq. domain specification.

10