EMI-2009-1

Roll No.

Total No. of Pages: 3

BT-4/M09

9314

Electronics Instrumentation and Measurement

Paper: ECE-202-E

Time: Three Hours]

[Maximum Marks: 100

Note: Answer completely any FIVE questions selecting at least ONE question from each unit.

UNIT-I

- (a) Distinguish resolution and scale readability. Define threshold, repeatability and maintainability.
 - (b) Write short notes on relative, systematic, and random errors.
 - (c) Write short notes on Double Kelvin bridge for the measurement of low resistances.

 5+6+9
- (a) Write short notes on the general characteristics of a recording instrument, i.e., Input impedence, sensitivity, range, zero drift, and frequency response.
 - (b) Describe precision measurement of medium resistance with Wheatstone bridge.
 - (c) What are the limitations of Wheatstone bridge? 5+5+10

UNIT-II

- (a) Distinguish the difference among D' Arsonval, ballistic, and vibrating galvanometers.
 - (b) Write a brief technical note on Maxwell's bridge with neat circuit and phasor diagram.
- (c) How PDM is done in magnetic tape recorders? 5+5+10

 Download all Notes and papers from StudentSuvidha.com

 9314

EMI-2009-2

- 4. (a) How to use Basic meters like (DC and AC meters) and describe the meter errors: scale error, zero error, parallax error, friction error and loading effect?
 - (b) Describe the X-Y recorder with all basic construction and working details.
 - (c) Explain the De Sauty's bridge principle for the measurement of capacitance.

 5+8+7

UNIT-III

- 5. (a) Explain the principle and working of Q-meter.
 - (b) Define frequency response and gain band width, slew rate, input bias current, input offset voltage, CMRR.
 - (c) If CMRR is 80dB, what does it mean?

8+10+2

- 6. Write short notes on the following:-
 - (a) Wave analyser
 - (b) DVMs
 - (c) Display methods. (LED, LCD)

5+5+5+5

UNIT-IV

- 7. (a) What are the various factors that influence the choice of transducer?
 - (b) An RTD is fabricated from platinum exhibits a temperature coefficient of resistivity $\gamma_1 = 0.003702$ /°C. Assume γ_2 is negligible. If the resistance of the sensor is 100 Ω at 0°C, find the resistance of the sensor at the following temperatures:
 - (i) -340°C (ii) 190°C (c) 500°C (iii) -220°C (iv) 360°C
 - (v) 600°C.

(c) What is meant by data acquisition? Discuss data acquisition systems with the help of a block diagram with all its components.

4+6+10

- (a) Write an engineering brief describing the several different material combinations employed in standard thermocouples.
 - (b) Outline the advantages associated with the case of telemetry for data transmission.
 - (c) Write short notes describing a system using frequency division multiplexing.

 5+5+10

EMI-2009-3

9314 3 3850