Roll No84			1
Prir	nted Pa	ages: 4 on 10 logs minimize	
		BT-4/M-14	
		SIGNAL AND SYSTEMS	
		Paper-EE-208-E	9
Tim	e allo	wed: 3 hours] [Maximum marks:	100
Not	te: A	ttempt five questions in all, selecting at least one ques	tion
	fr	om each section.	
		Section-1	
1.	(a)	Explain even and odd signals with examples. Find even and add components of the signal:	the
		$x(t) = 7t^3 + 5t^2 + 2t + 4.$	5
	(b)	Find the Fourier transform of a unit step function.	. 5
	(c)	Explain the time-shifting and frequency shift	ing
		property of Fourier transform.	10
2.	(a)	State the Convolution theorem and give its significant	nce.
		Prove the following properties of convolution:	
		(i) Distributive property, and	
		(ii) Associative property.	10
	(b)	(i) Explain the Dirichlet conditions for converge	nce
		of Fourier transform.	5
		(ii) Determine the Laplace transform of t sint.	5
	-		

(2)

Section-2

- State and prove sampling theorem.
 - What is discrete time decimation and interpolation? What is its significance? Mathematically show the effect of decimation and interpolation in the frequency domain 10
- What is PDF? How do we get PDF from probability distribution function?
 - Find the inverse z-transform of

$$x(z) = \frac{1 - z^{-1} + z^{-2}}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})(1 - z^{-1})}$$

Section-3

- What do you mean by causal and non causal system and lines and non linear system? Given a continuous time system with input x(t) and output y (t) related by y(t) = x (sin(t)). Find the following:
 - Is this system causal?
 - Is this system linear?

10

8411

(3)

- (b) Write a note on the following:
 - (i) SISO
 - (ii) MISO.

10

- 6. (a) For the following input output relationships, determine whether the corresponding system is linear, time invariant or both?
 - (i) $y(t) = t^2 x(t-1)$
 - (ii) $y[n] = x^2[n-2]$

10

- (b) Determine whether the system described by y(t) = cos(x(t)) is:
 - (i) Memoryless
- (ii) Stable
- (iii) Causal
- (iv) Linear
- (v) Time invariant.

10

Section-4

- 7. (a) What do you mean by transfer function?
 - (b) What are the advantage of using state variable technique for system modelling?
 - (c) Consider a stable LTI system that is characterised by differential equation:

$$\frac{d^2}{dt^2}y(t) + 4 \cdot \frac{d}{dt}y(t) + 3y(t) = \frac{d}{dt}x(t) + 2x(t).$$

Find the impulse response of the system.

10

P.T.O.

(4)

- 8. (a) State and prove the causality and stability property of LTI system. 10
 - (b) Define transfer function. Find the transfer function of the system described by the following differential equation:

When do your make by trustler function

$$\frac{d^2}{dt^2}y(t) + 11\frac{d}{dt}y(t) + 24y(t) = \frac{5d}{dt}x(t) + 3x(t)$$

with zero initial conditions.

10