SnS_2006_1

Signal and Systems

Paper : EE - 208 E

Time: Three Hours]

[Maximum Marks: 100

Note: — Attempt any FIVE questions. Selecting at least ONE question from each unit.

UNIT-I

1. (a) Describe the Gram-Schmidt procedure for obtaining orthogonal signals required for representation of signals.

(b) Determine the Fourier series representation for the following signal.

- (a) State and prove the following properties of Fourier transform
 (i) Parseval's Relation (ii) Convolution
 - (b) Obtain the Fourier transform of the following signal

$$x(t) = t \left(\frac{\sin t}{\pi t}\right)^2.$$

UNIT-II

 (a) The noise voltage in a circuit is modelled as a Gaussian random variable with zero-mean and variance equal to 10-8

Download all Notes and papers from StudentSuvidha.com

SnS_2006_2

- (i) What is the probability that the value of noise excends
- (ii) When this noise passes through a half-wave rectifier, find the PDF of the rectified noise.
- (b) The random variable ϕ is uniformly distributed on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Find the PDF of $x = \tan \phi$. Compute the mean and variance of x.
- 4. (a) State and prove the sampling theorem.
 - (b) Compute the z-transform of the following signal and obtain the pole-zero plot.

$$x(n) = 4^{n} \cos \left[\frac{2\pi}{6} n + \frac{\pi}{4} \right] u[-n+1]$$
 10

UNIT-III

- (a) Explain the following system properties with suitable examples.
 - (i) Time-invariance (ii) Causality (iii) Stability
 - (b) Compute the convolution of the following signals:

$$x[n] = \left(-\frac{1}{2}\right)^n u[n-4]$$

and
$$h[n] = 4^n u[2-n]$$
.

8

8

- 6. (a) Explain the terms:
 - (i) Deterministic signals (ii) Stochastic signals
 - (iii) Power signals (iv) Energy signals.
 - (b) Write the technical notes on the following:
 - (i) Lumped and distributed parameter systems
 - (ii) MIMO systems.

UNIT-IV

7. (a) An LTI system, initially at rest, is described by the difference

Download all Notes and papers from StudentSuvidha.com

8660 (OL) (2D) 2 Contd.

$$y[n] + 2y [n-1] = x [n] + 2x [n-2]$$

Find the response of this system to the following input x[n].

(b) For the given system

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}(t)$$

and the output $y(t) = [1 \ 0] x(t)$ with initial conditions

$$x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $u(t)$ as a unit-step function applied at $t=0$,

find the output y(t).

10

10

8. (a) Consider the system characterized by the differential equations:

$$\frac{d^{3}y(t)}{dt^{3}} + 6\frac{d^{2}y(t)}{dt^{2}} + 11\frac{dy(t)}{dt} + 6y(t) = x(t)$$

Determine the zero-state response of this system for the input $x(t) = e^{-t} u(t)$.

(b) An LTI system is described by the following information.

$$x(s) = \frac{s+2}{s-1}$$
; $x(t) = 0$ for $t > 0$ and

$$y(t) = -\frac{2}{3}e^{2t}u(-t) + \frac{1}{3}e^{-t}u(t)$$

Determine the impulse response.

10

Download all Notes and papers from StudentSuvidha.com
8660 (OL) (2D)
3 2550