total . no-

8606

10

BT-6/M-13

GRAPH THEORY & COMBINATORICS

Paper: CSE-322

Time: Three Hours]

[Maximum Marks: 100

Note: Attempt five questions in all, selecting at least one question from each unit. All questions carry equal marks.

UNIT-I

- (1) (a) Discuss any two applications of graph in detail. 10
 - (b) Prove that a connected graph G is an Euler's graph if and only if it can be decomposed into circuits. 10
 - 2. (a) What do you understand by Hamiltonian path and circuit? Prove that in a complete graph with n vertices there are (n-1)/2 edge-disjoint Hamiltonian circuits, if n is an odd number > = 3.
 - (b) Prove that the ring sum of any two cut-sets in a graph is either a third cut-set or an edge-disjoint union of cut-sets.

UNIT-II

- (a) Differentiate between Planar and Non-planar graphs.

 Describe various representations of planar graph. 10
 - (b) Show that the chromatic polynomial of a graph of n vertices satisfies the inequality $Pn(\lambda) < = \lambda(\lambda 1)^{n-1}$.
 - 4. (a) Explain enumeration of simple graphs, multigraph and digraphs using Polya's theorem.

(b) Prove that every complete tournament has a directed Hamiltonian path.

UNIT-HI

- 5. (a) Discuss and compare the performance of various graph theoretic algorithms.
 - (b) Explain Dijkstra's algorithm for finding shortest path with the help of an example.
- Write down the algorithm for Planarity Testing. Also discuss
 the circuit-path decomposition in detail with appropriate
 examples.

UNIT-IV

- 7. (a) State Pigeonhole principle. Explain the principle with the help of suitable examples.
 - (b) Solve the following recurrence relation:

$$C_n = 2C_{n-1} + 1$$
, if $n > 1$ and $C_1 = 1$.

- 8.) Explain the following in detail:
 - (a) Generating functions.
 - (b) Hamming code for error detection and correction. 20