BT6/M11

Graph Theory and Combinatorics

 Paper: CSE-322Time : Three Hours]
[Maximum marks : 100
Note:- Attempt FIVE questions in all, selecting at least ONE question from each unit.

UNIT-I

1. (a) Give definitions of separability and show with the help of examples that these are equivalent.
(b) (i) Prove that in a non-separable graph G, the set of edges incident on each vertex of G is a cut set.
(ii) Prove that a non-separable graph has a nullity $\mu=1$ if and only if the graph is a circuit.
2. (a) Show that two graphs in Fig. 1 are isomorphic:

Fig. 1
(b) Define Euler graph and mention theorems related to Euler graph.

UNIT-III

3. (a) Define and explain planar graphs.
(b) Explain the properties common to two graphs of Kuratowski. Also explain what do you understand by Kuratowski's two graphs.
4. Explain the following :
(i) Polya's counting theorem and Graph enumeration
(ii) Max-flow min-cut theorems.

UNIT-IIII

5. Write a program for generating all spanning trees. Also give the description of the algorithm. Name various minimal spanning tre algorithms.
6. What do you understand by depth-first search technique and its use ? Describe the depth-first search algorithm on a graph. How the graph $\overrightarrow{\mathrm{G}}$ represented after-depth first search implementation.

UNIT-IV

7. (a) What do you understand by recurrence relations? Explain. Find the recurrence relations for :
(i) the number of ways to pick k objects with repetition from n-types.
(ii) the number $a_{n, m, k}$ of distributions of n-identical objects into k distinct boxes with at most four objects in a box and with exactly m-boxes having four objects.
(b) Explain Generating functions and their role in solving combinatorial problems.
8. Write notes on :
(i) Error Correcting Codes
(ii) Inclusion-Exclusion Principle.
