BT-2/M-15

8201

MATHEMATICS-II

(2006 Onwards)

Paper-MATH-102 (E)

Option-II

Time Allowed: 3 Hours

[Maximum Marks: 100]

Note: Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT-I

1. (a) Find the Inverse of the matrix, using elementary transformation method.

$$\begin{bmatrix}
1 & 1 & 1 \\
4 & 3 & -1 \\
3 & 5 & 3
\end{bmatrix}$$
10

- (b) Find the values of a and b for which the equations x + ay + 3 = 3; x + 2y + 2z = b; x + 5y + 3z = 9, are consistent. When will these equations have a unique solution?
- (a) For a Symmetrical square matrix, show that the eigen vectors corresponding to two in equal eigen values are orthogonal.

8201/K/1614/21,100
Download all Notes and papers from StudentSuvidha.com

(b) If
$$S = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix}$$
, where $a = e^{\frac{2\pi i}{3}}$. Prove that,

$$\mathbf{S}^{-1} = \frac{1}{3}\mathbf{\bar{S}}.$$

UNIT-H

3. (a) Solve the differential equation:

$$y(2xy + e^x) dx - e^x dy = 0.$$
 10

(b) An object whose temperature is 75°C cools in an atmosphere of constant temperature 25°C at the rate of kT, T being the excess temperature of the body over that of the temperature. If after 10 min, the temperature of the object falls to 65°C, find the temperature after 20 min. Also find the time required to cool down to 55°C.

10

- 4. (a) Find the solution of the differential equation :
 - $(D^2 + 2)$ y = $e^x + 2$, by method of undetermined coefficients.

(b) Solve
$$(2x - 1)^3 \frac{d^3y}{dx^3} + (2x - 1)\frac{dy}{dx} - 2y = x$$
. 10

Download all Notes and papers from StudentSuvidha.com

5. (a) Find the Laplace transform :

(i)
$$f(t) = |t - 3| + |t + 3|, t \ge 0$$

(ii) $f(t) = \int_{0}^{t} t e^{t} \sin t dt$.

(b) Find the inverse Laglace transform:

(i)
$$\cot^{-1}\left(\frac{s}{\pi}\right)$$

(ii) $\frac{1}{s(s^2+4)}$.

6. (a) State and prove Convolution theorem and hence

evaluate:
$$\frac{1}{s(s^2+1)}$$
.

(b) Using Laplace transform, solve

$$(D^2 + 1) x = t \cos 2 t$$

given $x(0) = x'(0) = 0$.

UNIT-IV

7. (a) Solve the following PDE:

$$y^2p - xyq = x(z - 2y).$$
 10

(b) Using Charpit's method, solve

$$Z = p^2 x + q^2 y.$$

8201/K/1614/21,100 3
Download all Notes and papers from StudentSuvidha.com

8. (a) Solve the Diffrential equation:

$$(D^2 - DD') z = \cos 2y (\sin x + \cos x).$$
 10

(b) A Square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by

u(x, 20) = x(20 - x), when 0 < x < 20, while other three edges are kept at 0°C. Find the Steady state temperature in the Plate.