END TERM EXAMINATION

SIXTH SEMESTER [B.TECH] MAY-JUNE 2017

Paper Code: ETEC-308

Time: 3 Hours

Note: Attempt all questions as directed. Internal choice is indicated.

Data: k=1.38*10⁻²³J/K, q=1.6*10⁻¹⁹C, n_i=1.45*10¹⁰cm⁻³, ϵ_0 =8.85*10⁻¹⁴ F/cm, ϵ_{si} =11.7 ϵ_0 F/cm, ϵ_{ox} =3.97 ϵ_0 F/cm

- Q1 (a) Derive an expression for depletion region depth at the onset of surface inversion in a MOS structure. (5)
 - (b) Discuss in brief the latchup in bulk CMOS and how to prevent it. (5)
 - (c) Discuss the charge-sharing problem in VLSI circuits, suggest one method to overcome charge sharing problem.

 (5)
 - (d) Consider a CMOS inverter with following parameters:
 nMOS V_{TO,n}=0.6V μ_nC_{ox}=60 μA/V²
 pMOS V_{TO,p}=-0.7v μ_PC_{ox}=25 μA/V²
 The power supply voltage is V_{DD}=3.3V. The channel length of both transistors in L_n=L_p=0.8μm. Determine the (W_n/W_p) ratio so that the switching threshold voltage of the circuit is V_{th}=1.4V.
 - (e) Explain the working of Zipper CMOS circuit.

UNIT-I

- Q2 (a) Briefly discuss basic steps of LOCOS process and what is the need for such process. (5)
 - (b) Explain the working of CMOS inerter clearly mentioning various regions of operation with neat graph and derive the expression for V_{IL} and V_{IH}. (7.5)
- Q3 (a) Consider a MOSFET with parameters: $t_{ox}=200A^{\circ}$, $\Phi_{GC}=-0.8V$, $N_A=2*10^{15}$ cm⁻³, $Q_{ox}=q.2*10^{11}$ C/cm², determine the threshold voltage V_{TO} under zero substrate bias at room temperature (T=300K)
 - (b) Derive an expression for drain current in an NMOS transistor and discuss in detail the effect of channel length modulation on current-voltage characteristics. (7.5)

UNIT-II

- Q4 (a) Derive an expression for propagation delay times by solving state equation of CMOS inverter with neat labeled waveforms. (7.5)
 - (b) Implement XNOR gate and 2:1 MUX using transmission gate. (5)
 - Q5 (a) Explain the biasing conditions and operating regions of transmission gate, also obtain the expression for equivalent resistance in different regions of operation. (6)
 - (b) Explain the working of CMOS NOR2 gate and derive the expression for switching threshold voltage V_{th}. (6.5)

P.T.O.

ETEC-308

UNIT-III

- Q6 (a) Draw the CMOS circuit of AOI-based implementation of "clocked NOR-based SR latch" circuit and describe the working with required waveforms. (6)
 - (b) Explain how voltage bootstrapping helps enhancement-type circuit in which the output node is weakly driven. (6.5)
- Q7 (a) Draw the "CMOS AOI realization of JK latch" and explain its working.
 - (b) Differentiate between ratioed logic and ratioless logic using "dynamic shift register". (6.5)

UNIT-IV

- Q8 Write a short note on the following-
 - (a) VLSI Design flow

(4.5)

(b) Full Custom Design

(3) (5)

(c) Concept of regularity, modularity and locality with example

ETEC-308