END TERM EXAMINATION

THIRD SEMESTER [B.TECH] DECEMBER-2015

Paper Code: ETMA-201 (Batch 2013 Onwards) Subject: Applied Mathematics-III
Time: 3 Hours

Maximum Marks: 75

Note: Attempt any five questions including Q.no.1 which is compulsory. Select one question from each unit. Use of scientific calculator is allowed.

- Q1 (a) State Dirichlet's conditions for convergence of Fourier series and check whether the function $f(x) = \frac{1}{3-x}$, $0 < x < 2\pi$ satisfy Dirichlet's conditions or not?
 - (b) Obtain the Fourier transform of the function f(x) given by $f(x) = \begin{cases} 1 x^2; & |x| \le 1 \\ 0 & ; & otherwise \end{cases}$ and hence evaluate $\int_0^\infty \left(\frac{x \cos x \sin x}{x^3}\right) \cos \frac{x}{2} dx$. (5)
 - (c) Derive the difference equation by eliminating the arbitrary constants \mathbf{A} and \mathbf{B} from $y_n = A \cdot 3^n + B \cdot 5^n$.
 - (d) Prove the following relations: (i) $\Delta \nabla = \delta^2$
 - (ii) $\mu \delta = \frac{1}{2} (\Delta + \nabla) = \frac{1}{2} (E E^{-1})$
 - (e) Solve the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ by Euler's method with the initial condition y(0) = 1 for x = 0.06 taking interval of differencing h = 0.02.

Unit-I

- Q2 (a) Find the Fourier series for $f(x) = x^2$ in (0, 4) and deduce that (6.5) $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}.$ (b) Find a series of cosines of multiples of x which will represent $x \sin x$
 - (b) Find a series of cosines of multiples of x which will represent $x \sin x$ in the interval $(0, \pi)$ and show that $\frac{1}{1.3} \frac{1}{3.5} + \frac{1}{5.7} \frac{1}{7.9} + \dots = \frac{\pi-2}{4}$. (6)
- Q3 (a) Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$; $0 < x < \infty$, t > 0 subject to the conditions. (i) u(0,t) = 0, t > 0 (ii) $u(x,0) = \begin{cases} 1; & 0 < x < 1 \\ 0; & x > 1 \end{cases}$ (iii) u(x,t) is bounded. (6.5)
 - (b) Obtain the Fourier sine series for f(x) containing three non-zero terms where f(x) is given in the following table: (6)

x	0	1	2	3	4	5
f(x)	0	10	15	8	5	3

Unit-II

- Q4 (a) Solve the simultaneous difference equations. $u_{x+1} + v_x 3u_x = x, \quad 3u_x + v_{x+1} 5v_x + 4^x$ subject to the conditions $u_1 = 2, v_1 = 0$. (b) Solve $y_{n+2} 2\cos\alpha$. $y_{n+1} + y_n = \cos\alpha n$. (6)
- Q5 (a) Using the Z-transform, solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$. (6.5)

ETMA-201

(b) Find the inverse Z-transform of
$$\frac{2z}{(z-1)(z^2+1)}$$
.

(6)

Unit-III

- Q6 (a) Starting with $(x_0, y_0, z_0) = (0, 0, 0)$ and using Jacobi's method, find the next five iterations upto four decimal places for the system of equations 5x y + z = 10, 2x + 8y z = 11, -x + y + 4z = 3, and find where the iterations converges. (6.5)
 - (b) Use Newton-Raphson method to solve the equation $3x \cos x 1 = 0$ correct to four decimal places. (6)
- Q7 (a) Find the number of men getting wages between Rs. 100 and 150 from the following data: (6.5)

Wages in Rs.	0-100	100-200	200-300	300-400
Frequency	9	30	35	42

(b) Find the interpolating polynomial for (0, 2), (1, 3), (2, 12) and (5, 147) using Lagrange's interpolation formula.

Unit-IV

- Q8 (a) From the data, y(0.60) = 0.6221, y(0.65) = 0.6155, y(0.70) = 0.6138 and y(0.75) = 0.6170 find the maximum or minimum value of y. (6.5)
 - (b) Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by using Simpson's 1/3 rule taking $h = \frac{1}{4}$ and by using Simpson's $\frac{3}{8}$ rule taking $h = \frac{1}{6}$ where h is the interval of differencing. (6)
- Q9 (a) Solve the differential equation $\frac{dy}{dx} = x + y$, y(0) = 1 for y(0.1), y(0.2) and y(0.3) by using modified Euler's method correct to four decimal places. (6.5)
 - (b) Apply the fourth order Runge-Kutta method to solve $\frac{dy}{dx} = x^2 + y^2$, y(0) = 1. Take step size h = 0.1 and determine approximation to y(0.1) and y(0.2) correct to four decimal places.
