END TERM EXAMINATION

EIGHTH SEMESTER [B. TECH] MAY-JUNE 2018

Paper Code: ETCE-422

Subject: Environment Engineering

Time :3 Hours

Maximum Marks:75

Note: Attempt any five questions including Q. no.1 which is compulsory.

Attempt any five parts:-Q1

- How do the meteorological phenomena influence the air quality? Describe in
- Name and describe. Live neitheral mechanism that work in culmorphism Design criteria for standard dimensions of cyclones in centrifugal collectors.

 What do you understand by the term leachers? (b)
- (c)
- What do you understand by the term leachate? What problems are posed by (d) leachate and how it can be overcome?
- Explain the salient provisions of the Municipal Solid Wastes (Management and (e) Handling) Rules 2000, indicating their limitations.
- Determine the air requirement to oxidize completely 3 tonnes of waste having chemical formula C₅₀H₁₀₀O₂₀N.
- Define settling chambers. Describe the equation required to calculate the size of (g) particles removed with 100% efficiency in a settling chamber.
- Define frequency, time period, amplitude, power of sound and sound intensity. (h)
- Define the term sound pressure level with suitable equation. What value of sound velocity Q2 will you use for air as a medium at 20°C.? During noise sampling the value for fluctuating noise level 55dB(A) lasting for 10 minutes, followed by 75dB(A) lasting for 30 minutes, followed by 65 dB(A) lasting for 55 minutes, followed by 110 dB(A) for 4 minutes. What is Leq of this noise?
- Describe in detail about Dusts, Smokes, Mists, Fumes and Vapor. In what size range do Q3 particles most effectively reduce vision? What is the mechanism by which acid mist can cause destruction of limestone surfaces? Show the chemical reaction. (12.5)
- Estimate the overall chemical composition of a solid waste sample. Derive an approximate chemical formula for the organic portion of a solid waste sample with the composition given in Table below. Use the resulting composition to estimate the energy content. Assume sample of 500 Kg with moisture content of 21%. (12.5)

G	Wet	Composition, kg					
Component	mass (Kg)	C	H	0	N	S	Ash
Food wastes	75	2.16	0.29	1.69	0.12	0.02	0.23
Paper	225	18.40	2.54	18.61	0.13	0.08	2.54
	50	4.18	0.56	4.24	0.03 ′	0.02	0.48
Cardboard	50	5.88	0.71	2.23	-	-	0.98
Plastics Garden	50	1.91	0.24	1.52	0.14	0.01	0.18
Trimmings Wood	25	1.98	0.24	1.71	0.01	-	0.06

- Enumerate the various methods which can be used for disposal of municipal solid waste, Enumerate the various methods in the two most widely adopted methods in India. Q5
- Describe in d-tail the methodology used for collecting particulate sample from a stack Describe in detail the methodological content of the particulate sample from a stack along with basic equations and sampling criteria used in stack monitoring. Estimate the along with basic equations and swould be expected in stack monitoring. Estimate the theoretical volume of methane gas that would be expected from the anaerobic digestion of 1.5 tonne of a waste having the composition C₄₅H₉₀O₃₀N.

P.T.O.

Solid waste from commercial area of Dwarka is to be collected using stationary-container collection system having 5 m³ containers. Determine the appropriate truck capacity for the following conditions: (i) container utilization factor is 0.55 (ii) average number of containers per location is 4 (iii) collection vehicle compaction ratio is 2.5 (iv) container unloading time is 0.13 h/container (v) Average drive between container locations 0.1 h (vi) unloading time is 25 km with speed limit 88 km/h (vii) Time from garage to first one way haul distance is 25 km with speed limit 88 km/h (vii) Time from garage is 0.35 h (ix) container location = 0.3 h (viii) Time form last container location to garage is 0.35 h (ix) number of trips to disposal site per day is 3 and length of workday is 8 h.

Differentiate between pyrolysis and incineration of solid waste management. Determine the heat available in the exhaust gases from the combustion of 250 tonnes/d of solid waste with an energy content 12,500kJ/kg and following composition. Assume the incinerator residue contains 5 percent carbon and the temperatures of the entering air and residue from the grate are 25 and 45°C respectively. The heat losses are given in Table 1 below

Carbon=30%, Hydrogen= 6%, Oxygen =22, Nitrogen = 4%, Sulfur = 1%, Water = 20%, (12.5)
Inerts =20%.

Table Heat losses in combustion of solid waste

Type of losses	Remarks
D	The heating value of carbon is about 32,789 kJ/kg.
Reactor 1. Unburned carbon	Typically, the grate residue is assumed to contain from 4 to 8 percent carbon.
2. Radiation	Heat lost through the reactor wal and other appurtenances to surroundings is estimated as 0:003-0.005 kJ/kg of furnace
A series and a series of the s	f-input.
Latent heat 3. Inherent moisture	When any and a favore. The land
3. Innerent moisture	Water content of waste. The laten heat of vaporization for water is approximately 2420 kJ/kg.
4. Moisture in bound water	Zpproximately 2 -20 horing.
5. Moisture from exidation of net hydrogen	
Sensible heat	
6. Sensible hear in residue	Specific heat of residue is taken as 1047 J/kg · K (10.25 Btu/lb · °F)
7. Stack gases	1047 J/kg · K (10.25 Etc)16 27
	** ***

	No. of the second