- Explain the following in detail:
- 12+8
- (a) Under what circumstances are box girder preferred overplate girder?
- (b) What are the steps involved in the design of plate girder?

Roll No.

B. Tech. 5th Semester (Civil Engg.) Examination – December, 2016

DESIGN OF STEEL STRUCTURE - I

Paper: CE-301-F

Hours I

Time : Three Hours J

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Question No. 1 is compulsory. Students have to attempt five questions in total at least one question from each Section. Assume any data if missing. All questions carry equal marks.

- 1. (a) State the main advantages of using steel as a structural material.
- al material. 4
- (b) Write down four advantages of using welded connections over bolted connections.
 (c) Define effective length of column along with its
- Explain diagonal buckling and web crippling.

slenderness ratio.

24287-5350-(P-4)(Q-9)(16)

P. T. O.

(e) What are different modes of failures of a plate girder?

SECTION - A

- Explain & draw stress-strain curve of mild steel in detail & also explain design specification as per IS 800:2007.
- (a) Explain different types of tension members in detail and also write down the factors affecting the strength of tension members.
- (b) A single-riveted double cover but joint in used to connect two plates 16 mm thick. The rivets used are power driven 20 mm in dia. at a pitch of 60 mm. Find out the safe load per pitch length & efficiency of joint.

SECTION - B

- 4. Design a column of effective length 6 mm it is subjected to an axial load of 1600 kN provide two channels back to back connected with battens by welded connection. Assuming fy = 250 MPa. 20
- Design a two tier grillage foundation to carry an axial load of 1200 kN. A base plate 700 × 700 mm is provided below the stanchion. The concrete is of M25 grad and bearing pressure of earth limited to 150 kN/m².

24287-5350-(P-4)(Q-9)(16) (2)

SECTION - C

- 6. Design a beam of 6.5 m effective span carrying a uniform load of 30 kN/m if the compression flange is laterally unsupported. Assuming fy = 250 N/mm². 20
- Design a simply supported gantry girder to carry an electric overhead travelling crane for the following data:

Height of rai Span of gantry girder Distance between C/C of gantries Crane Capacity Weight of rail Distance between C/C of wheels Minimum approach of crane hook Weight of crane Weight of crane and crab 11. 300 N/m 4.0 m 320 kN 300 KV 3.20 m 1,20 m 200 K 75 mm 16.0 m

SECTION - D

. Design a plate girder, 20 m span to be provided in a hall of a restaurant. The superimposed load, exclusive of self weight is 100 kN/m. Design the web splice at one-fourth of span and flange angle splice at one-fourth of span.

24287-5350-(P-4)(Q-9)(16) (3)

P. T. O