Internal diameter = 18 cm Length of the column = 5 m Load carried by the column = 250 KN Ends condition = both ends are hinged Young's modulus = 99 GN/m² Eccentricity of the load = 2.5 cm (from the axis of the column) SECTION - D 8. Draw the B.M. and S.F. diagram for the beam loaded as shown in Fig. 1.3. 9. (a) Determine the rotation at support and deflection at mid-span and under the loads in the simply supported beam as shown in Fig. 1.4 using moment area method. $\begin{array}{c|c} & E \\ \hline & D \\ \hline & 3 \end{array}$ $\begin{array}{c|c} & D \\ \hline & 3 \end{array}$ $\begin{array}{c|c} & D \\ \hline & 3 \end{array}$ Fig. 1.4 (b) A beam ABCD is simply supported at A and D over a span of 12 m. The beam carries point load 65 KN and 45 KN at distances 3m and 6m from the end A. Neglecting the weight of the beam, find the slopes at A, B and deflection at C and D using conjugate beam method. Take I = 12 × 10⁸ and E = 200 KN/mm². 24064-6350-(P-4)(Q-9)(17) (4) Roll No. ## 24064 ## B. Tech 3rd Semester (Civil) Examination – December, 2017 ## STRUCTURAL ANALYSIS - I Paper: CE-201-F Time: Three Hours] [Maximum Marks: 100 Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination. Note: Question No. 1 is compulsory. Students have to attempt 5 questions in total at least one questions from each Section. All questions carry equal marks. - (i) Define modular ratio. - (iii) Describe stress-strain diagram for mild steel (iii) What do you mean by Mohr's correction? - Explain thermal stresses and thermal strains. - What do you mean by Maxwell law of reciprocal theorem? $5 \times 4 = 20$ ## SECTION - A The composite bar consisting of steel and aluminium components shown in Fig. 1.1 connected of *two* grips at the ends at a temperature of 65 °C. Find the stresses in the two rod when the temperature falls to 25 °C. 24064-6350-(P-4)(Q-9)(17) (i) if the ends do not yield. P. T. O. (ii) if the ends yield by 0.25 mm. Take Es = 2×10^5 and aluminum bars are 250 mm² and 375 mm². N/mm^2 , Ea = $0.70 \times 10^5 N/mm^2$, $\alpha_s = 1.18 \times 10^{-9}$ per °C, $\alpha_a = 2.34 \times 10^{-5}$ per °C. Areas of the steel 3. (a) A rectangular block of materials is subjected to a same planes. Find: tensile of 60 N/mm² on a plane at right angles, together with shear stresses of 65 N/mm2 on the tensile stress of 120 N/mm² on one plane and a The direction of the principal planes. (iii) The magnitude of the greatest shear stresses. The magnitude of the principal stresses 3 A tie bar has enlarged ends of square section bar is 0.14 mm. Take $E = 2 \times 10^5$ N/mm². there is 140N/mm² and the total extension of the size and length of the middle portion if the stress portion of the bar is also square section. Find the 60 mm × 60 mm as shown in Fig. 1.2. If the middle 87.5 kN 60 mm × 60 mm Fig. 1.2 300 mm 60 mm × 60 mm 87.5 kN 24064-6350-(P-4)(Q-9)(17) (2) SECTION - B 4. A hollow marine propeller shaft turning at 120 rpm is diameter ratio of the shaft is to be 2/3 and the direct expenditure of 6558.5 kW of shaft power, the required to propel a vessel at 18 metres per sec for the stress due thrust is not to exceed 10 N/mm². Calculate efficiency of the propeller being 69 percent. The shaft diameters Çī the maximum shearing stress due to torque. 20 A rectangular beam 20 cm deep by 10 cm wide is subjected to maximum bending moment of portion of the beam where the bending moment is GN/m3, find out the radius of curvature for that beam. If the value of E for the material is 200 500 kNm. Determine the maximum stress in the maximum. 3 An I beam has flanges 10 cm wide and 1 cm thick and web 12 cm high and 1 cm thick. If this section a shearing force of 10 KN, find the maximum is subjected to a bending moment of 10 kNm and tensile and shear stress induced in it. SECTION - C 6. A hollow cylindrical cast iron column is 4 m long, 7. Form the following data of a column of circular 0.98 times the external diameter. Take Fc = 650 axial load 250 KN. Use Rankine's formula and adopt a both ends being fixed. Design the column to carry an N/mm^2 and $\alpha = 1/1600$. factor of safety is 6. The internal diameter may be as External diameter = 28 cm section. Also find the maximum eccentricity in order section, calculate the extreme stresses on the column that there may be no tension any where on the section. 24064-6350-(P-4)(Q-9)(17) (3) P. T. O.