THEORY OF AUTOMATA COMPUTATION

[Maximum marks: 100

Note: Question No. 1 is compulsory. Attempt five questions in total selecting one question from each section.

- Explain the following questions:
- Any two differences between DFA and NFA.
- Define finite automata with output briefly

3

- What do you understand by epsilon-closure of a state in finite automata?
-) Explain closure properties of regular languages.
- (e) What is context sensitive languages?
- (f) Give formal definition of a PDA
- (g) When do you say that turing machine accept a string?
- Give an example of an undecidable problem.
- Differentiate L+ and L*
- State Halting problem of Turing machine.

Section-A

(a) Design a DFA which accepts even number of a's over the alphabet {a,b}.

12

(b) Explain the Limitations of Finite Automata.

ch

State and prove Arden's method.

0

24266-P-3-Q-9(17)

P.T.O.

S following CFG and convert it into CNF: Define Chomsky normal form. Simplify the Define leftmost and rightmost derivations. Give

(a) 9 equal number of 0's and 1's. Construct PDA M to accept the language having State and prove pumping lemma for regular Explain the programming techniques involved in $L = \{WW^R | W \Sigma(a,b)^*\}$ is not regular. Turing machine. languages. Show that the language. Section-C

0

.7 (a) that computes the integer function f defined as Define Turing machine. Design a Turing machine

24266

24266

(b) of example. Differentiate between PDA and NPDA with the help $f(n) = 3^n$ where n is integer and $n \ge 0$

Section-D

00 Explain the following with example:

10x2

- Partial recursive functions
- Primitive recursive functions

What do you mean by computability? Explain in detail.

9