- **8.** (a) Find the volume of a spherical cap of height *h* cut off from a sphere of radius *a*.
- (b) Find, by double integration, the volume generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line.
- **9.** (a) Evaluate $\iint r^3 dr d\theta$, over the area bounded between the circles $r = 2 \cos \theta$ and $r = 4 \cos \theta$.
- (b) By changing the order of integration, evaluate

$$\int\limits_{0}^{\infty}\int\limits_{0}^{x}xe^{-\frac{x^{n}}{y}}dydx.$$

ROII NO. 24002

24002

B. Tech 1st Semester (Common for All Branches) Examination – December, 2017

MATHEMATICS-I
Paper: Math-101-F

Time: Three Hours]

[Maximum Marks: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt total five questions, selecting one question from each Sections. Question No. 1 is compulsory.

All questions carry equal marks.

1. (a) Test the convergence of:

$$\sum_{n=1}^{8} \left(\frac{1}{\sqrt{n} + \sqrt{n+1}} \right).$$

(b) For what values of λ and μ do the equations x + y + z = 6, x + 2y + 3z = 10, $x + 2y + \lambda z = \mu$ have unique solution.

24002-22050-(P-4)(Q-9)(17)

P. T. O.

- (c) If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial^2 r}{\partial x^2}$ and $\frac{\partial^2 \theta}{\partial y^2}$.
- (d) Define Beta and Gamma functions. Also give relationship between them.

SECTION - A

2. (a) Discuss the convergence of the series:

$$\frac{x}{2\sqrt{3}} + \frac{x^2}{3\sqrt{4}} + \frac{x^3}{4\sqrt{5}} + \frac{x^4}{5\sqrt{6}} + \dots \infty$$

(b) Test the convergence of the series:

$$\sum_{n=1}^{\infty} \frac{n!}{(n+1)^n} x^n$$

3. Test $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$ for convergence and absolute

convergence.

SECTION - B

4. (a) Find the rank of the matrix:

by reducing it in its normal form.

24002-22050-(P-4)(Q-9)(17) (2)

(b) Are the following vectors linearly dependent? If so, find the relation between them:

$$x_1 = (1,2,1), x_2 = (2,1,4), x_3 = (4,5,6), x_4 = (1,8,-3).$$

5. Diagonalise the matrix:

$$A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$$
 and hence find A^4 .

SECTION - C

- **6.** (a) Using Taylor's series, expand $\sin x$ in powers of $\left(x \frac{\pi}{2}\right)$. Hence find the value of $\sin 91^\circ$ correct to four decimal places.
- (b) Find the radius of curvature for the curve r = a $(1 + \cos \theta)$.
- 7. (a) Find the maximum and minimum distances of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.
- (b) Evaluate the integral:

$$\int_{0}^{\pi/2} \frac{\log(1 + a\sin^2 x)}{\sin^2 x} dx.$$

24002-22050-(P-4)(Q-9)(17) (3)

P. T. O.