END TERM EXAMINATION SECOND SEMESTER [BCA] MAY-JUNE 2016 Paper Code: BCA-106 Subject: Digital Electronics Time: 3 Hours Maximum Marks: 75 Note: Attempt any five questions. | Q1 | (a) Define Boolean algebra. Give its five laws.(b) Explain K-map. Give the steps involved for simplification of Bool equations. | | |----|---|------------------------------| | | (c) Define gray codes and excess – 3 codes. How to convert a binary convert a binary codes into excess – 3 code? Also give their applications. | ode | | Q2 | (a) Explain Full adder with truth table and logic diagram.(b) Explain the concept of binary multiplier with example and diagram. | (7)
n. (8) | | Q3 | (a) Give the steps to convert Binay code to gray code.(b) Explain SR flip flop with NAND gate. Give its truth table. | (9)
(6) | | Q4 | (a) Differentiate De-Multiplexer and decoder. (b) How JK flip-flip-flop can be realized using SR flip-flop. | (6)
(9) | | Q5 | (a) Dellie Stille logisters and its by post | shift
(10)
from
(5) | | Q6 | (a) Explain 4-bit ripple counter with waveform and truth table.(b) Differentiate RAM and ROM. | (9)
(6) | | Q7 | (a) Explain 4:1 multiplexer with equation and gates.(b) Define the concept of PLA and its applications.(c) Differentiate combinational and sequential circuits. | (5)
(5)
(5) | | Q8 | (b) Explain the working of serial in-parallel out shift register with | (7.5)
logic
(7.5) | ******