8. (i) What are the sources for probable errors. Explain the mechanism for best fit of an experimental data.

Calculate the error in measured power W for an error 'h' in the voltage V across a resistor and 'k' in the resistance R. Which of the errors is dominant?

(4) -(P-4)(Q-8)(16)

Roll No.

91526

B. Sc. 2nd Sem. Physics (Hons.) (New Scheme) Examination - May, 2016

MATHEMATICAL PHYSICS - II

Paper: Phy-201

Time: Three Hours 1

[Maximum Marks: 40

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting at least two questions from each Unit.

UNIT-I

1. Differentiate between linear and non-linear differential equations by giving two examples of each

91 526-550- (P-4)(Q-8)(16)

P. T. O.

type. Underline the difference in the mechanism for complete solution of the *two* types. Obtain solution of $x^2 d^2y/dx^2 + 4x dy/dx + 2y = \log x$.

- **2.** Define Wronskian and describe its application to check independence of the solutions of a second order homogenous differential equation. Apply it to the solutions of $xd^2y/dx^2 2dy/dx = 0$.
- 3. For equations reducible to linear equations with constant coefficients, solve: 4×2

(i)
$$x^2 d^2 y/dx^2 - 3x dy/dx + y = \log x [(\sin (\log x) + 1)/x]$$

(ii)
$$(2x-1)^2 d^2 y/dx^2 + (2x-1) dy/dx - 2y = 8x^2 - 2x + 3$$

4. (i) Apply variation of parameters to solve:

$$\frac{d^2y}{dx^2} + 4y = \tan 2x$$

(ii) Using method of undetermined coefficients, obtain solution of

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{3x} + \sin x$$

UNIT - II

- 5. What are Dirichlet conditions. Obtain a Fourier series to represent e^{-ax} from $x = -\pi$ to $x = \pi$. Hence derive series for $\pi/\sinh \pi$.
- 6. (i) Present Fourier Series expansion of $f(x) = \begin{cases} \pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$
 - (ii) Derive the expression for output of a Full-wave rectifier as Fourier Series.
- 7. (i) Obtain a half range cosine series expansion for

$$f(x) = \begin{cases} 0, & 0 \le x \le 1/2 \\ (l-x), & \frac{t}{2} \le x \le 1 \end{cases}$$

(ii) Derive the expression for output of a Full-wave rectifier as Fourier Series.