

B.Sc. 4th Semester Hons (New Scheme) Examination, May-2016

CHEMISTRY

Paper-CH (H)-207-P-24 Physical Chemistry

Time allowed: 3 hours] [Maximum marks: 40

Note: Attempt five questions in all, Question No. 1 is compulsory. Select one question from each section.

- 1. (a) Explain the spontaneity of a process in term of Work function. 1×8=8
 - (b) Define Thermodynamics.
 - (c) Which type of process has zero entropy change for universe?
 - (d) What is the formula of Clausius Claypeyron equation?
 - (e) Write the formula for Nernst equation.
 - (f) Define Chemical kinetics.
 - (g) Define Thermodynamic scale of Temperature.
 - (h) Define Rusting.

Section-I

2. (a) ToProvethat

(i)
$$\Delta S = C_p e_n \frac{T_2}{T_1}$$

Section-III

- (a) Define Electrochemical series. Explain the significance of Electrochemical series.
 - Apply Nernst equation on:
 - Gas metal electrode
 - (ii) Redox electrode
- Explain the following: 7.
 - Over potential
 - Polarisation.
 - Give differences in between Electrochemical cell and electrolytic cell.

Section-IV

- How can you determine the pH of the unknown 8. 4.4 solution using glass electrode.
 - Explain the following:
 - Methods for controlling corrosion
 - Factors affecting rate of corrosion.
- Derive Henderson-Hazel equation to determine thepH ofBasic buffer. 2,4,2
 - How can you determine the pH of the unknown solution using Hydrogen electrode?
 - Write a note on Hard sphere model theory.

92238

- (ii) $[\Delta G]_{\bar{I}} = nRT \ln \frac{V_1}{V_2}$
- (iii) $\left[\frac{dA}{dT} \right]_{V} = -S$
- 6,2 To show that Entropy is a state function.
- To Prove that: 3. (a)
 - (i) $-W_{\text{nseful}} = \Delta G$.
 - (ii) $[\Delta A]_T = nRT \ln \frac{P_1}{P_2}$
 - (iii) $\left[\frac{dG}{dT}\right] = -S$
 - To prove that the efficiency of Carnot engine is 6,2

Section-II

- Explain Gibb's adsorption equation.
 - Explain the variation of chemical potential with temperature.
- Derive Clausius Clapeyron equation. 4,4
 - Explain the variation of chemical potential with pressure.

92238