(b) If $\vec{f} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$; evaluate $\iint_S \vec{f} \cdot \hat{n}dS$, where S is the surface of the cube bounded by x = 0, x = 2, y = 0, y = 2, z = 0, z = 2.

8. (a) Prove that $\iiint_V \frac{1}{r^2} dV = \iint_S \frac{\overrightarrow{r} \cdot \widehat{n}}{r^2} dS, \quad \text{when}$

$$\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k} \text{ and } r = |\overrightarrow{r}|.$$

(b) State and prove Stoke's Theorem.

SECTION ~ V

- **9.** (a) Define divergence of a vector function. $2 \times 6 = 12$
 - (b) Find unit tangent vector to any point on the curve $x = a \cos t$, $y = a \sin t$, z = bt.
 - (c) Find the value of λ so that the following vectors are coplanar:

$$\overrightarrow{a} = 2\hat{i} - 7\hat{j} + \lambda \hat{k}, \ \overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}, \ \overrightarrow{c} = 3\hat{i} - 5\hat{j} + 2\hat{k}.$$

- (d) Write position vector of a point (x, y, z) in cylindrical polar co-ordinates.
- (e) Give the statement of Gauss-Divergence Theorem.
- (f) Find the volume element dV in cylindrical co-ordinates.

Roll No.

91556

B. Sc. 2nd Sem. (Mathematics) (Hons.) (Old & New)

Examination - May, 2016

VECTOR CALCULUS

Paper: BHM-123

Time: Three Hours]

[Maximum Marks: 60

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. IX of Section-V is compulsory. All questions carry equal marks.

SECTION - I

1. (a) If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of A, B, C, prove that $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$ is a vector perpendicular to plane of $\triangle ABC$.

9 15 56-500 -(P-4) (Q-9)(16)

P. T. O.

- (b) If \vec{a} , \vec{b} , \vec{c} are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{b} \times \vec{c} = \vec{a}$, show that three vectors \vec{a} , \vec{b} , \vec{c} are orthogonal in pairs and $|\vec{b}| = 1$, $|\vec{c}| = |\vec{a}|$. 6
- 2. (a) Prove that the necessary and sufficient condition for the vector function \vec{f} of a scalar variable t to have constant direction is $\vec{f} \times \frac{d\vec{f}}{dt} = 0$.
 - (b) Show that $\vec{a} \times (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{c} \times \vec{a})$, $\vec{c} \times (\vec{a} \times \vec{b})$ are coplanar.

SECTION - II

- **3.** (a) Prove that grad ϕ is normal to the surface $\phi(x, y, z) = c$, where c is a constant.
 - (b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$; prove that $div(r^n \vec{r}) = (n+3)r^n$.
- 4. (a) Prove that Curl $\frac{\overrightarrow{a} \times \overrightarrow{r}}{r^3} = -\frac{\overrightarrow{a}}{r^3} + \frac{3\overrightarrow{r}}{r^5} (\overrightarrow{a} \cdot \overrightarrow{r})$, where \overrightarrow{a} is a constant vector.
 - (b) Find Curl (Curl \overrightarrow{f}) of the function $\overrightarrow{f} = y(x+z)\hat{i} + z(x+y)\hat{j} + x(y+z)\hat{k}$.

9 1556- -(P-4)(Q-9)(16) (2)

SECTION - III

- 5. (a) If u, v, w are orthogonal curvilinear co-ordinates, then $\frac{\partial \overrightarrow{r}}{\partial u}$, $\frac{\partial \overrightarrow{r}}{\partial v}$, $\frac{\partial \overrightarrow{r}}{\partial w}$ and ∇u , ∇v , ∇w are reciprocal system of vectors.
 - (b) If (r, θ, ϕ) are spherical co-ordinates, show that $\nabla \left(\frac{1}{r}\right) = \nabla \times (\cos \theta \nabla \phi).$
- **6.** (a) Express the acceleration of a particle in spherical co-ordinates.
 - (b) Show that:

$$\nabla^2 \phi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u} \left(\frac{h_2 h_3}{h_1} \frac{\partial \phi}{\partial u} \right) + \frac{\partial}{\partial v} \left(\frac{h_3 h_1}{h_2} \frac{\partial \phi}{\partial v} \right) \right. \\ \left. + \frac{\partial}{\partial w} \left(\frac{h_1 h_2}{h_3} \frac{\partial \phi}{\partial w} \right) \right]$$

SECTION - IV

7. (a) Evaluate:

$$\int_{c} \vec{f} \cdot d\vec{r},$$

where $\vec{f} = (x^2 + y^2, \hat{i} - 2x\hat{y})$, the curve C is the rectangle in xy-plane bounded by y = 0, x = a, y = b, x = 0.

P.T.O.

91 55 6 -(P-4)(Q-9)(1 6) (3)