8. (a) Find the minimal spanning tree for the graph using Prim's method:

(b) Prove that A vertex V is a cut – vertex of a connected graph G iff there exist two vertices x and y distinct from V such that every path between x and y passes through V.

SECTION ~ V

- 9. (a) Define direct product of lattices.
 - (b) Write De-Morgan's laws for Boolean Algebra.
 - (c) Define complement of a simple graph.
 - (d) Define Binary tree.
 - (e) Define Bridge of a graph.
 - (f) Define Modular lattice.

Roll No.

91557

B. Sc. 2nd Sem. (Mathematics) (Hons.) Old & New Examination – May, 2016 DISCRETE MATHEMATICS-II

Paper: BHM-124

Time: Three Hours]

[Maximum Marks: 60

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt one question from each Section. Section-V is compulsory.

SECTION - I

- (a) Let (L, ≤) be a lattice in which ∧ and ∨ denote the operations of meet and joint. Then prove that for any a, b ∈ L:
 - (i) $a \le b \text{ iff } a \land b = a$
- (ii) $a \le b \inf a \lor b = b$
- (b) Consider the lattice L = {1, 2, 3, 6} under divisibility relation and the lattice (P(S), ⊆) where S = {a, b}. Then show that the lattices L and P(S) are isomorphic.
- 2. (a) Consider the lattice $L=\{0,\ 1,\ 2,\ 3,\ 6\}$ under divisibility relation. Then show that $(L,\ l)$ is a complete lattice.

91557-60-(P-4)(Q-9)(1 6)

P. T. O.

(b) Show that the lattice of factors of 45 under divisibility is a distributive lattice.

SECTION - II

- **3.** (a) Show that complement of an element *a* in Boolean algebra *B* is unique.
 - (b) Consider the Boolean algebra *B* of power set of {*a*, *b*, *c*} and the Boolean algebra *B'* ={1, 2, 5, 7, 10, 14, 35, 70}. Then show that *B* and *B'* are isomorphic.
- **4.** (a) Use the Karnaugh map representation to find a minimal form of each of the following functions: 6

(i)
$$f(x,y,z) = xyz' + xy'z' + x'y'z' + x'y'z + x'yz + x'yz'$$

(ii)
$$f(x,y,z,w) = xyz'w' + xyz'w + xy'zw + xy'zw' +$$

$$x'y'zw + x'y'zw' + x'yw'z'$$

(iii)
$$f(x,y,z,w) = xyzw' + xy'zw' + xy'z'w' + xy'z'w +$$

$$x'y'zw' + x'y'z'w' + x'yz'w'$$

(b) Use Karnaugh maps to redesign logic circuit given below:

91557- -(P-4)(Q-9)(16) (2)

SECTION-III

5. (a) Show that the graphs given below are isomorphic?

- (b) Draw a graph that has:
 -) an Euler circuit but has no Hamiltonian circuit.
 - (ii) has Hamiltonian circuit but has no Euler circuit.
 - (iii) has neither an Euler circuit nor a Hamiltonian circuit.
- **6.** (a) Show that in a simple planar graph G of n vertices $(n \ge 3)$, there is at least one vertex of degree ≤ 5 . 6
 - (b) Write the incidence and adjacency matrix of the graph:6

SECTION - IV

- 7. (a) Prove that every connected graph has at least one spanning tree. 6
 - (b) Construct the tree for the expression $(a + b cd) + (g^3 f)$ and convert the expression in Polish notation also.

(3)

91557- -(P-4)(Q-9)(1 6)

P. T. O.