- ·(iv) Why are net and filters called generalized sequence? Discuss.
- (v) Is power set of a set is filter? Discuss.
- (vi) State stone-cach compactification theorem.
- (vii) Define evaluation function.
- (viii)State fundamental theorem of algebra.

 $2 \times 8 = 16$.

Roll No.....

74453

M.Sc. Mathematics 2nd Semester Examination – May, 2016

TOPOLOGY - II

Paper: MM - 423

Time: Three Hours]

[Maximum Marks: 80

Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 9 from section V is compulsory.

SECTION-I

- 1. (a) Prove that a topological space X is regular if and only if for every point x ∈ X and open set G containing x, there exists an open set G* such that x ∈ G and C(G*) ⊆ G.
 - (b) State and prove Tietz extension Theorem 10

74453-2, 450-(P-4)(O-9)(16)

P.T.O.

- 2. (a) Is subspace of completely regular space completely regular? Justify your answer.
 - (b) Show that complete normality is a topological property.

SECTION - II

- 3. (a) Show that a topological space in Hausdorff if and only if limits of all nets in it are unique.
 - (b) Define cluster point of a net. Show that X is compact if and only if every net in X has a cluster point in X.
- 4. (a) Let A be any non void family of subsets of a set X.Show that there exists a filter on X containing A if and only if A has finite intersection property.
 - (b) State and prove ultra filter principle.

SECTION - III

- (a) Define with example point finite covering and locally finite covering. Also discuss their relationship.
 - (b) State and prove Michaell theorem of paracompactness.

74453-2,450-(P-4)(Q-9)(16) (2)

- **6.** (a) Prove that a T_3 space with σ locally finite base, every open set is F_{σ} set.
 - (b) Why the notion of paracompactness is generalization of compactness? Discuss.

SECTION - IV

- **7.** Prove that every second axiom T_3 Space X is metrizable.
- 8. (a) Define homotopy of paths and show that the relation of homotopy with respect to x of paths based on x is an equivalence relation of the set of all paths in E based on X.
 - (b) Define a covering map. Under what conditions is the restriction of a covering map. Establish a covering map between R and S'.

SECTION - V

- **9.** (i) Give an example of normal space which is not completely normal.
 - (ii) Define a regular space and give an example of a regular space which is not T_1 .
 - (iii) Define Covering spaces.

744 53-2,450 (P-4)(Q-9)(16) (3)

P.T.O.