

Roll No.

74601

M. Sc. Physics 2nd Semester Examination – May, 2016 STATISTICAL MECHANICS

Paper: V

Time: Three Hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Unit. All questions carry equal marks.

UNIT - I

1. Write short notes on:

 $4 \times 4 = 16$

- (i) Quantization of phase space
- (ii) Gibbs paradox
- (iii) Anomalous properties of liquid helium
- (iv) Energy fluctuations in quantum statistics

UNIT-H

- 2. Writernoteson:
 - (a) Ergodichypothesis

74601-1650(P-3)(Q-9)(16)

P. T. Q.

- (b) Postulate of equal a priori probability of Eigen states and
- (c) Statistical interpretation of entropy. Prove that the density of system in the neighborhood of some given system in phase space remains constant in time.
- Differentiate between macroscopic and microscopic states and obtain expression of entropy S for a perfect monatomic gas in a microcanonical ensemble.

UNIT - III

- 4. Define partition function and calculate its value for a grand canonical ensemble. Use it to derive expression for chemical potential, Helmholtz free energy and Gibb's free energy.
 16
- 5. What is meant by micro-canonical, canonical and grand canonical ensembles? Describe the canonical ensemble and calculate the entropy of a perfect gas. Explain how the internal energy and equation of state can be derived.

UNIT-IV

- 6. State the basic assumptions with which the classical Fermi-Dirac, and Bose. Einstein statistics start and deduce expressions for distribution function in the three cases. Mention the cases where the respective distribution functions are applicable.
- Derive the expressions for energy and pressure of an ideal Fermi-Dirac gas. Discuss the concept of Fermi-energy and its relation with chemical potential.

UNIT-V

- 8. What are the phase transitions of first and second kind? How cooperative phenomenon accounts for phase transitions of second kind? Present the analysis of Ising Model in two dimensions.
- Explain the concept of one dimensional random walk.
 Analyse Brownian motion as an example of fluctuating force.

7460 1:1650-(P-3)(Q-9)(16) (2)

74601-1650-(P-3)(Q-9)(16)

(3)