- (iii) Define Borel sets.
- (iv) Define Baire Measure.
- (v) Define Lebesgue Stieltjes Integral.
- (vi) Is every Hilbert space reflexive? Discuss.
- (vii) Define orthonormal sets.
- (viii)In sum of two projections always a projection?
 Discuss.

Roll No.

78451

M. Sc. (Mathematics) 4th Semester

Examination - December, 2014

FUNCTIONAL ANALYSIS - II

Paper: MM-521

Time: Three hours]

[Maximum Marks: 80

Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 9 from Section V is compulsory.

SECTION - I

- 1. (a) State and prove Hahn Decomposition Theorem.10
 - (b) Give an example to show that the Hahn decomposition need not be unique and is unique except for nullsets.
- 2. (a) Prove that product of two measures is again a measure.

78451/60-(P-4)(Q-9)(14)

P. T. O.

	(b)	State and prove Fubini's Theorem. 12
f		SECTION - II
3.	(a)	State and prove Riesz Markov Theorem. 12
	(b)	Define regularity of Baire Measure. 4
4.	(a)	Prove that $c[a,b]$ is not a Hilbert space. 12
	(b)	Prove that every one dimensional normed space is an miner product space.
		SECTION - III
5.	(a)	Give an example of a convex set. Show that a closed convex subsect C of a Hilbert space H contains a unique vector of smallest norm.
	(b)	Show that every nonzero Hilbert space contains a complete orthognormal set.
6.	(a)	State and prove Riesz Representation Theorem for Hilbert spaces.
	(b)	Define conjugate of a Hilbert space. 2
	(c)	State Bessel's inequality. 2
10		

7. (a)	Define the adjoint operation of linear operator on
** ***	a Hilbert space. Prove that the set of all self
	adjoint operators on a Hilbert space H form a
	closed linear subspace of the space of linear
	operators on H which is a real Banach space and
	contains identity transformation. 12
- X	A REPORT OF THE PROPERTY OF TH

- (b) Define normal operator on a Hilbert space. 2
- State Spectral Theorem. 2
- 8. (a) Show that an operator on H is unitary if and only if it is an isometric isomorphism of H onto itself. 8
 - (b) Give an example of an operator on a certain Hilbert space which is an isometry but is not a unitary operator.
 - (c) Show that if N is a normal opearator on the Hilbert space H, then:

$$N^2 = N^2$$

SECTION - V

- 9. (i) State Lebesgue Decomposition Theorem.
 - (ii) State Projection Theorem.

78451**-90** -(P-4)(Q-9)(14) (3)

P. T. O.